
Analysis of Stable Vertex Values:
Fast Query Evaluation Over An Evolving Graph

Mahbod Afarin
∗

mafar001@ucr.edu
CSE Department, UC Riverside

USA

Chao Gao
∗

cgao037@ucr.edu
CSE Department, UC Riverside

USA

Xizhe Yin

xyin014@ucr.edu
CSE Department, UC Riverside

USA

Zhijia Zhao

zhijia@cs.ucr.edu
CSE Department, UC Riverside

USA

Nael Abu-Ghazaleh

nael@cs.ucr.edu
CSE Department, UC Riverside

USA

Rajiv Gupta

rajivg@ucr.edu
CSE Department, UC Riverside

USA

Abstract
Evaluating a query over a large, irregular graph is inherently

challenging. This challenge intensifies when solving a query

over a sequence of snapshots of an evolving graph, where

changes occur through the addition and deletion of edges.

We carried out a study that shows that due to the gradually

changing nature of evolving graphs, when a vertex-specific

query (e.g., SSSP) is evaluated over a sequence of 25 to 100

snapshots, for 53.2% to 99.8% of vertices, the query results

remain unchanged across all snapshots. Therefore, the Un-
changed Vertex Values (UVVs) can be computed once and

then minimal analysis can be performed for each snapshot

to obtain the results for the remaining vertices in that snap-

shot. We develop a novel intersection-union analysis that very
accurately computes lower and upper bounds of vertex val-

ues across all snapshots. When the lower and upper bounds

for a vertex are found to be equal, we can safely conclude

that the value found for the vertex remains the same across

all snapshots. Therefore, the rest of our query evaluation is

limited to computing values across snapshots for vertices

whose bounds do not match. We optimize this latter step

evaluation by concurrently performing incremental compu-

tations on all snapshots over a significantly smaller subgraph.

Our experiments with several benchmarks and graphs show

that we need to carry out per snapshot incremental analysis

for under 42% vertices on a graph with under 32% of edges.

Our approach delivers speedups of 2.01-12.23× when com-

pared to the state-of-the-art RisGraph implementation of the

KickStarter-based incremental algorithm for 64 snapshots.

1 Introduction
Graph analytics are employed in many domains to uncover

insights from connected data. There has been much work

resulting in scalable graph analytics systems for GPUs, mul-

ticore servers, and clusters [8, 15, 18, 21, 22, 29, 32, 33, 40, 42,

47, 50, 52, 59]. Most real-world graphs change dynamically

over time [45]. Therefore, recently there has been a great deal

of interest in analytics over changing graphs [1, 12, 16, 19, 34,

∗
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48, 49]. Efficient dynamic graph processing has diverse ap-

plications, including social network analysis for community

detection and influence propagation [2, 14], personalized

recommendation systems [5, 24], and telecommunication

networks for traffic management and fault detection [30, 41].

It is also crucial in financial networks for fraud detection

and risk assessment [4, 26], biological networks like gene

regulatory networks [31, 55], and transportation networks

for traffic flow optimization [51, 57]. In e-commerce, it aids

in customer interaction analysis and supply chain manage-

ment [39, 53], while in cybersecurity, it enhances intrusion

detection and network defense [3, 13]. Additionally, smart

cities benefit from urban planning and resource management

applications [7, 38], and healthcare uses include epidemic

tracking and patient monitoring [17, 44]. These applications

underscore the importance of dynamic graph processing.

As a graph continues to evolve, a sequence of snapshots is

captured which grows in length over time. An evolving graph
query is aimed at analyzing the evolution of a graph property

(e.g., shortest paths) over a time window. That is, an evolving

graph query typically requires a graph query to be solved

over a sequence of snapshots 𝐺0,𝐺1, . . . ,𝐺𝑛 . By selecting

the time window, the user requests query evaluation for all

snapshots within a time window to observe trends in query

results (e.g., changes in shortest paths). As the duration of

the time window for query evaluation increases, so do the

number of snapshots that must be analyzed and hence the

cost of query evaluation rises. Thus, efficiently evaluating a

query over many snapshots is an important open problem.

Existing Approaches. To reduce the high cost of query

evaluation over a large number of snapshots, existing ap-

proaches such as Tegra [19] and CommonGraph [1] leverage

incremental algorithms. A general incremental algorithm

that supports both edge additions and deletions was first

proposed in KickStarter [49] and then further extended and

optimized by Graphbolt [34] and RisGraph [12] respectively.

While both Tegra and CommonGraph employ incremen-

tal algorithms, there is a major difference. Tegra explicitly

processes both additions and deletions using incremental
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Figure 1. Given series of 100 snapshots obtained by perform-

ing 100K edge updates (50% deletions and 50% additions)

from one snapshot to the next, the above plot gives the per-

centage of vertex property values that remain unchanged

across 25, 50, 75, and 100 snapshots for 4 input graphs and 5

benchmarks. 100K edges represent between 0.14% of edges

in LJ to 0.025% for Wen.

algorithms developed in KickStarter [49] and Graphbolt [34].

In contrast, CommonGraph [1] converts edge deletions be-

tween snapshots into edge additions between a common

graph and each snapshot, thus trading expensive deletions

processing for relatively inexpensive additions processing.

The common graph is first used to evaluate a query. Starting

from the common graph and query results computed for

it, edge additions are processed to incrementally compute

query results for each snapshot.

Our Insight: UVVs. We develop a new insight and a novel

algorithm to take advantage of the insight to substantially

optimize query evaluation across multiple snapshots.

Our key insight originates from the gradually changing

nature of an evolving graph. From the results of a study pre-

sented in Figure 1, we observe that, given a vertex-specific
query (e.g., SSSP), the query results for 53.2% to 99.8%
of vertices remain unchanged across 25 to 100 consec-
utive snapshots. Therefore the unchanged vertex values
(UVVs) can be computed once, and then minimal analysis

can be performed for each snapshot to obtain the results

for the remaining vertices in that snapshot. Moreover, the

incremental computation can be performed over a much

smaller graph obtained by eliminating the incoming edges of

all vertices with unchanged values – since no updates need

to be applied to their values, the incoming edges play no role

in the incremental computation for any snapshot.

Our Solution. To take advantage of the above insight, and

resulting opportunities for optimizing evaluation of an evolv-

ing graph query, we need to address the following key chal-

lenge. Given a vertex-specific query 𝑄 and a sequence of

snapshots, we must identify vertices with unchanged

vertex values (UVVs). To address this challenge, we develop
a novel intersection-union analysis to compute lower and

upper bounds of a vertex value across all snapshots. When

the bounds are found to be equal, we can safely conclude

that the vertex value found remains the same across all the

provided snapshots. Therefore, the rest of our query eval-

uation is limited to computing values across snapshots for

vertices whose bounds were not equal. Our approach is ap-

plicable to path-based monotonic algorithms. A path-based

monotonic algorithm incrementally explores or constructs

paths within a graph while ensuring that the computed met-

ric along each path (e.g., distance, cost) adheres to a mono-

tonic property, such as non-increasing or non-decreasing

values. As the algorithm progresses, it extends partial paths

in such a way that the solution’s quality improves or remains

constant, ensuring convergence to an optimal or sub-optimal

solution without regressing to a worse state.

We further optimize evaluation of query 𝑄 by concur-
rently performing incremental computations for all snap-

shots over a significantly smaller graph that we refer to as

the 𝑄-Relevant SubGraph (𝑄𝑅𝑆). The smaller graph is ob-

tained by eliminating the incoming edges of all vertices with

unchanged values.

Our experiments with several benchmarks and graphs for

64 snapshots show that we need to carry out per snapshot

incremental analysis for under 42% vertices on a graph with

under 32% of edges. When we incrementally evaluate the

query on each snapshot using 𝑄𝑅𝑆 , the cost of evaluation

is lowered. Our approach delivers speedups of up to 12.23×
over the state-of-the-art RisGraph implementation of the

KickStarter-based incremental algorithm for 64 snapshots.

The key contributions of this paper are as follows:

• Identifying Unchanged Vertex Values: We develop a novel

intersection-union analysis for identifying unchanged ver-

tex values by bounding vertex values across all snapshots.

• Reduced Graph for Incremental Computation: We identify

a significantly smaller 𝑄-Relevant Subgraph (𝑄𝑅𝑆) over

which incremental computations are performed.

• Concurrent Incremental Evaluation for All Snapshots: We

build a system that simultaneously performs incremental

computations for all snapshots further reducing the cost.

• Experimental Evaluation: We demonstrate our approach

by applying it to evaluation of queries across 64 snapshots

of five input graphs and five monotonic algorithms.

2 Background
An evolving graph consists of a series of snapshots 𝐺0, 𝐺1

· · · 𝐺𝑛 of a graph captured over time. In evolving graph

analytics, we are interested in solving a query over a specific

time window during which the graph is evolving. Multiple

snapshots of the graph at different points in time during the

time window are available, and solving a query over a time

window requires computing its results for all the snapshots
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within that window. Evolving graph analytics is motivated

by a user’s need to observe trends in a graph property. A

naive approach for evaluating a query over all snapshots,

shown in Figure 2(a), simply evaluates a query from scratch

on each snapshot. To overcome the obvious inefficiency of

this approach, the following incremental approaches have
been proposed: the KickStarter-based streaming approach;

and the Common Graph deletion-free approach.

2.1 KickStarter-based Incremental Approach
Without loss in generality, we assume that all vertices are

present in all snapshots and the changes from one snapshot

to the next are represented in the form of additions and

deletions of the edges applied to an earlier snapshot that

produces the next snapshot. The batches of edges, including

additions and deletions, are denoted as 𝛿1, 𝛿2 · · · 𝛿𝑛 in Fig-

ure 2(b). The KickStarter-based [49] incremental approach

evaluates the query of the first snapshot𝐺0 from scratch and

then incrementally processes 𝛿1 through 𝛿𝑛 in turn to obtain

query results for 𝐺1 through 𝐺𝑛 as shown in Figure 2(b).

𝐺! 𝐺" 𝐺# … 𝐺$
𝑅! 𝑅" 𝑅# 𝑅$

𝑄 𝑄 𝑄 𝑄

Full Full Full Full

(a) Naive Technique: Full Computation (Full) on each

snapshot of the graph (𝐺0, 𝐺1, ..., 𝐺𝑛) and independently

calculate the results for each snapshot from scratch.

𝐺! 𝐺" 𝐺# … 𝐺$

𝛿! 𝛿" 𝛿# 𝛿$

𝑅% 𝑅! 𝑅" 𝑅$

𝑄

Full

Inc Inc Inc Inc

(b) Kickstarter-based Incremental: Full Computation (Full)
on the first snapshot of the graph (𝐺0), and Incrementally

(Inc) apply the delta batches (𝛿1, 𝛿2, ..., 𝛿𝑛) to find the results

for each snapshot in (𝐺0 → 𝐺1 → · · ·𝐺𝑛).

Inc

𝐺!
𝑅!

𝑄

Full

𝐺" 𝐺# 𝐺$ … 𝐺%

Δ" Δ# Δ$

𝑅" 𝑅# 𝑅% 𝑅$

Δ%
Inc Inc Inc

(c) Deletion-Free Common Graph: Full Computation (Full)
on the Common Graph and Incrementally (Inc) add the

delta batches (Δ0, Δ1, ..., Δ𝑛) to the Common Graph to find

the results for each snapshot of the graph (𝐺0, 𝐺1, ..., 𝐺𝑛).

Figure 2. Strategies for Evolving Graph Query Evaluation.

2.2 The Common Graph Deletion-Free Approach
While the KickStarter-based approach avoids redundant com-

putation in the naive approach, it still needs to pay the high

cost of evaluation associated with processing edge deletions.

Past work on JetStream [43] has shown that incremental pro-

cessing for an edge deletion operation is significantly more

expensive than the edge addition operation for monotonic

graph queries. Therefore, the Common Graph approach was

recently proposed to avoid both redundant computation and

expensive handling of deletions (see Figure 2(c)). Common

Graph is the subgraph that is shared by all the snapshots

under consideration. Therefore, solving the query on it, and

then streaming different batches of edge additions enables in-

crementally computing the query on each snapshot without

having to explicitly deal with edge deletions.

Common Graph is the subgraph that is common to all snap-

shots of the evolving graph. Therefore, each snapshot can be

obtained by simply adding an appropriate subset of edges to

the Common Graph, that is, no edge deletions are required to

convert the Common Graph to any snapshot. After comput-

ing the query on this Common Graph, by adding the missing

edges for a snapshot and incrementally updating the query

results in response to the additions, the query results for the

snapshot are obtained. This is called the direct hop approach.

Figure 3 shows the Common Graph 𝐺𝐶 for three snap-

shots𝐺𝑖 ,𝐺𝑖+1, and𝐺𝑖+2. We add Δ𝑖
+ and remove Δ𝑖

− edges to
incrementally derive 𝐺𝑖+1 from𝐺𝑖 . Similarly, we can derive

𝐺𝑖+2 from𝐺𝑖+1 by respectively adding and deleting the delta

batches of edges. The Common Graph for the three snap-

shots, 𝐺𝐶 , is also shown. Direct hop approach adds different

subsets of edges to the Common Graph to derive the three

snapshots as shown in the figure. For example, to derive 𝐺𝑖

we should combine three batches of edges (Δ𝑖
− , Δ

𝑖+1
− , and

Δ𝑖+2
− ) and apply them once to 𝐺𝐶 . The main strength of the

direct hop workflow is that we can add all the addition delta

batches independently and find all the snapshots in parallel.

The main limitation of the direct hop is the redundant addi-

tion operations. For example, to derive 𝐺𝑖 and𝐺𝑖+1 we must

add Δ𝑖+1
− and Δ𝑖+2

− twice to 𝐺𝐶 . Therefore work sharing was

proposed to further reduce redundant additions.

Though Common Graph provides significant speedups

over KickStarter-based method [1], its scalability is limited.

Therefore, we argue that to further optimize performance,

it is essential to eliminate wasteful work on analyzing
UVV vertices and traversing incoming edges of UVV
vertices in the Common Graph. In subsequent sections,

we demonstrate how to identify UVVs and exploit them to

improve scalability.

3 Our Approach Based Upon Identifying
Unchanged Vertex Values (UVVs)

From our motivating study, we observed that the query

results computed for different snapshots are substantially

3
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Figure 3. Common Graph 𝐺𝐶 of snapshots 𝐺𝑖 , 𝐺𝑖+1, 𝐺𝑖+2.
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Figure 4. Results of query SSSP(s) for two consecutive snap-

shots. The second snapshot is obtained by deleting red edges

from the first snapshot and also adding the blue edges to

the second snapshot. Note that the shortest path values for

vertices marked in green are identical for both snapshots.

the same, i.e., the addition and deletion of edges frequently

causes changes to property values of a small subset of ver-

tices. In our discussion, we use UVVs to refer to vertices

with Unchanged Vertex Values. The example in Figure 4 il-

lustrates the presence of UVVs – 6 of the 10 total shortest

path values computed from source vertex 𝑠 are the same for

the two snapshots, these are the ones marked green.

Put differently, we observe that, for a specific query
𝑄 , there are many vertices whose property values
remain unchanged across all snapshots.

This observation motivates us to identify UVVs and then

use them to eliminate wasteful work performed during in-

cremental computations, including computations that at-

tempt to update UVV vertices and edge traversals that lead

to UVV vertices. By identifying UVVs and shrinking the

size of the graph over which incremental computations for a

given query𝑄 are performed, we will affect this optimization.

The reduced graph is named Q-Relevant Subgraph (QRS) for

query 𝑄 . Next we describe the steps of our algorithm and

illustrate it using an example.

Let us consider the shortest path query in this discussion,

though our approach is applicable to other vertex specific

path-based monotonic algorithms. Furthermore, without loss

of generality, assume that all vertices are present in all snap-

shots. Only the set of edges present differs across the snap-

shots due to batches of updates in the form of edge additions

and deletions that are performed as the graph evolves.

Our approach for identifying UVVs and generating the

query specific Q-Relevant Subgraph is as follows.

Step 1: Bounding Vertex Values for a Query. Let 𝐸0, 𝐸1,
· · · 𝐸𝑛 denote the sets of edges corresponding to the evolving
graph’s snapshots 𝐺0, 𝐺1, · · · 𝐺𝑛 . We consider two graphs

that are derived from the above snapshots as follows:

• Intersection Graph 𝐺∩: This is the graph that con-

tains edges that are common to all the snapshots, i.e.,

𝐸∩ = 𝐸0 ∩ · · · ∩ 𝐸𝑛 .
• Union Graph 𝐺∪: This is the graph that contains

all edges present across all the snapshots, i.e., 𝐸∪ =

𝐸0 ∪ · · · ∪ 𝐸𝑛 .
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Figure 5. The Union Graph 𝐺∪ provides upperbounds on
path lengths across all snapshots while the Intersection

Graph 𝐺∩ provides the lowerbounds. Query Relevant Graph

obtained by reducing 𝐺∩ and the query results used to boot-

strap incremental computations.

We evaluate the shortest path query for source vertex 𝑠

on both 𝐺∩ and 𝐺∪. Let us denote the shortest path value

computed for some vertex 𝑣 corresponding to 𝐺∩ and 𝐺∪ by
𝑉𝑎𝑙∩ (𝑠, 𝑣) and 𝑉𝑎𝑙∪ (𝑠, 𝑣). The following theorem captures

the relationship between the shortest path value of 𝑣 for any

snapshot 𝐺𝑖 .

Theorem 1. Given source vertex 𝑠 , the shortest path val-

ues from 𝑠 to vertex 𝑣 for 𝐺∩ and 𝐺∪, that is, 𝑉𝑎𝑙∩ (𝑠, 𝑣) and
𝑉𝑎𝑙∪ (𝑠, 𝑣), represent the upperbound and lowerbound over

the shortest path value of vertex 𝑣 across all snapshots 𝐺0,

𝐺1 · · · 𝐺𝑛 .

Proof. We observe that the Intersection Graph 𝐺∩ con-
tains only a subset of paths from any snapshot 𝐺𝑖 because

𝐸∩ = 𝐸0 ∩ · · · ∩ 𝐸𝑛 . Therefore, the shortest path value of
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Table 1. Upper and Lower bounds for different algorithms.

Alg. Upperbound and Lowerbound for 𝑉𝑎𝑙𝑖 (𝑠, 𝑣)
BFS 𝑉𝑎𝑙∪ (𝑠, 𝑣) ≤ 𝑉𝑎𝑙𝑖 (𝑠, 𝑣) ≤ 𝑉𝑎𝑙∩ (𝑠, 𝑣)
SSWP 𝑉𝑎𝑙∩ (𝑠, 𝑣) ≤ 𝑉𝑎𝑙𝑖 (𝑠, 𝑣) ≤ 𝑉𝑎𝑙∪ (𝑠, 𝑣)
SSNP 𝑉𝑎𝑙∪ (𝑠, 𝑣) ≤ 𝑉𝑎𝑙𝑖 (𝑠, 𝑣) ≤ 𝑉𝑎𝑙∩ (𝑠, 𝑣)
SSSP 𝑉𝑎𝑙∪ (𝑠, 𝑣) ≤ 𝑉𝑎𝑙𝑖 (𝑠, 𝑣) ≤ 𝑉𝑎𝑙∩ (𝑠, 𝑣)
Viterbi 𝑉𝑎𝑙∩ (𝑠, 𝑣) ≤ 𝑉𝑎𝑙𝑖 (𝑠, 𝑣) ≤ 𝑉𝑎𝑙∪ (𝑠, 𝑣)

vertex 𝑣 corresponding to snapshot𝐺𝑖 , denoted by𝑉𝑎𝑙𝑖 (𝑠, 𝑣),
is bounded by 𝑉𝑎𝑙∩ (𝑠, 𝑣) as follows:

𝑉𝑎𝑙𝑖 (𝑠, 𝑣) ≤ 𝑉𝑎𝑙∩ (𝑠, 𝑣)
Similarly, we observe that the Union Graph𝐺∪ contains

a superset of paths from any snapshot 𝐺𝑖 because 𝐸∪ =

𝐸0 ∪ · · · ∪ 𝐸𝑛 . Therefore, the shortest path value of vertex

𝑣 corresponding to snapshot 𝐺𝑖 , denoted by 𝑉𝑎𝑙𝑖 (𝑠, 𝑣), is
bounded 𝑉𝑎𝑙∪ (𝑠, 𝑣) as follows:

𝑉𝑎𝑙∪ (𝑠, 𝑣) ≤ 𝑉𝑎𝑙𝑖 (𝑠, 𝑣)
Therefore we conclude the following:

𝑉𝑎𝑙∪ (𝑠, 𝑣) ≤ 𝑉𝑎𝑙𝑖 (𝑠, 𝑣) ≤ 𝑉𝑎𝑙∩ (𝑠, 𝑣)

Note that the above result holds even when vertex 𝑣 is not

reachable from 𝑠 in 𝐺𝑖 or 𝐺∩ (i.e., shortest path value is∞).
Finally, in an evolving graph, an edge between a pair of

nodes may be added and deleted a number of times. This

type of edge will not be present in 𝐺∩ since it is not present
in all the snapshots. However, it will be present in 𝐺∪. The
weight of this edge can be set to the minimum of all weights

encountered for this edge to obtain a safe lowerbound.

The results of computing the lower and upper bounds for

our example using the intersection and union graphs are

shown in Figure 5.

In our discussionwe presented the upper and lower bounds

for 𝑉𝑎𝑙𝑖 (𝑠, 𝑣) for the SSSP algorithm. In Table 1, we present

the bounds for various benchmarks that we use in our eval-

uation (see Table 2). The upper and lower bounds for the

SSSP, SSNP, and BFS algorithms are similar because we take

the minimum of all possible results for a node – the intersec-

tion graph gives us the upperbound and the union graph the

lowerbound. On the other hand, for the SSWP and Viterbi

algorithms, since we take the maximum of all possible re-

sults, the union graph gives us the upperbound, and the

intersection graph gives us the lowerbound.

Step 2: Identifying UVVs – Vertices Whose Values Re-
main the Same Across All Snapshots. So far we have ob-

served that by solving a shortest path query on both 𝐺∪
and𝐺∩ we can bound the path lengths for any vertex across

all snapshots. This is illustrated in the example shown in

Figure 5. It is interesting to note that for many vertices,

the lowerbound and upperbound match precisely. This im-

plies that the shortest path lengths for these vertices
remain unchanged across all snapshots. Consequently,
we already have their results, and now we need to perform

incremental computations to update the results of only a

subset of vertices in each snapshot.

Theorem 2. Given a shortest path query with source

vertex 𝑠 and some vertex 𝑣 :

𝑖 𝑓 𝑉𝑎𝑙∪ (𝑠, 𝑣) = 𝑉𝑎𝑙∩ (𝑠, 𝑣) 𝑡ℎ𝑒𝑛

∀𝑖 [0 . . . 𝑛] 𝑉𝑎𝑙𝑖 (𝑠, 𝑣) = 𝑉𝑎𝑙∪ (𝑠, 𝑣) = 𝑉𝑎𝑙∩ (𝑠, 𝑣),
i.e., the query result value for vertex 𝑣 is the same for all

snapshots and equal to 𝑉𝑎𝑙∪ (𝑠, 𝑣) (or 𝑉𝑎𝑙∩ (𝑠, 𝑣)).

Proof. Since 𝑉𝑎𝑙∪ (𝑠, 𝑣) = 𝑉𝑎𝑙∩ (𝑠, 𝑣), the shortest path

from 𝑠 to 𝑣 of the same length is present both in 𝐺∩ and

𝐺∪. Moreover, the presence of shortest path in 𝐺∩ implies

that it is also present in all the snapshots because 𝐺∩ is the
subgraph of each snapshot.

Furthermore, there cannot be any path from 𝑠 to 𝑣 in any

snapshot 𝐺𝑖 that is of a shorter path length than 𝑉𝑎𝑙∩ (𝑠, 𝑣)
even though 𝐺𝑖 contains edges that are not present in 𝐺∩.
This is because if such a path existed, it would also be present

in 𝐺∪ and that would contradict the fact that 𝑉𝑎𝑙∪ (𝑠, 𝑣) =
𝑉𝑎𝑙∩ (𝑠, 𝑣).

Note that when 𝑉𝑎𝑙∪ (𝑠, 𝑣) = 𝑉𝑎𝑙∩ (𝑠, 𝑣) we have already
found the shortest path value from 𝑠 to 𝑣 for all snapshots.

However, when 𝑉𝑎𝑙∪ (𝑠, 𝑣) ≠ 𝑉𝑎𝑙∩ (𝑠, 𝑣), it does not imply

that 𝑉𝑎𝑙𝑖 (𝑠, 𝑣) cannot be the same for all snapshots.

Our algorithm is safe but not complete, that is, for a given

query it does not identify all vertices for which the shortest

path value remains the same across all snapshots. In Figure 5

we could not identify that its value remains unchanged. This

is because neither 𝐺∩ nor 𝐺∪ provide the value 10, rather
they provided values 11 and 9. Yet, in Figure 6, note that the

shortest path value for vertex 𝑐 is 10 in both snapshots.

Step 3: Deriving Q-Relevant Subgraph. Before perform-

ing incremental computations, we can substantially reduce

the size of the Intersection Graph as follows.

For each vertex whose property value has already
been determined, that is, its lowerbound and upper-
bound are found to be equal, the set of its incoming
edges can be removed from the graph.

This is because for the vertices whose results are already

known, no vertex updates are needed and the incoming edges

are responsible for causing their updates can be safely elim-

inated. In Figure 5, we show the resulting Q-Relevant Sub-

graph obtained after reducing the Intersection Graph 𝐺∩ by
eliminating incoming edges of vertices with precise vertex

values. The shortest path values of vertices that bootstrap

the next incremental computation phase correspond to the

shortest path values obtained by solving the query on 𝐺∩.
Step 4: Incremental Computations for Snapshots. Start-

ing from the Q-Relevant Subgraph, and initial results com-

puted from the Intersection Graph, we perform incremental

computations to obtain precise results for both snapshots

(see Figure 6). Note when a batch of additions is used for
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Figure 6. Carrying out incremental computations via edge additions to obtain final query results for each snapshot. Note that

for vertex 𝑐 , the final query result is the same (10) for both snapshots while its lower and upper bounds were 9 and 11.

incremental computation, the batch can also be further re-

duced by eliminating the edges whose sink is a node with

already known precise solution. In Figure 6, edge from 𝑑 to

𝑟 need not be streamed for snapshot 𝐺𝑖 because value for

vertex 𝑟 is already precise and same in both snapshots.

In conclusion, while our algorithm is safe, it does not

identify all vertices whose value remains the same across all

snapshots. However, as the experimental results presented

later in the paper will demonstrate, our algorithm is highly

effective as it identifies nearly all the vertices whose property

value remains unchanged across all snapshots.

Algorithm Summary. Algorithm 1 shows how the QRS

is found. The inputs to the algorithm are the Intersection

Graph (𝐺∩) and the Union Graph (𝐺∪) of all the snapshots
(line 1), the delta batches, which must be added to the Inter-

section Graph (𝐺∩) to obtain the results for each snapshot of

the graph. The number of delta batches equals the number

of snapshots (Δ0, Δ1, ..., Δ𝑛). Additionally, we should specify

the query (𝑄) as an input to the algorithm. The output of

the algorithm is the results of the query evaluation for each

snapshot of the graph (line 3). Therefore, we have 𝑛 arrays

to represent results of each snapshot, 𝑅0, 𝑅1, ..., 𝑅𝑛 .

The first step of the algorithm is to compute the results

of solving the query on the Intersection Graph (𝐺∩) and
the Union Graph (𝐺∪). Therefore, we should define two re-

sult arrays, 𝑅∩ and 𝑅∪, to store the outcomes of the query

evaluation on each graph. The size of these two arrays is

proportional to the number of vertices in the graph, which

is𝑚 (lines 4-6). The Compute (Graph 𝐺 , Query 𝑄) function

will evaluate the query 𝑄 on the graph 𝐺 (lines 7-8). In the

second step of the algorithm, we need to compare the results

from the two value arrays 𝑅∩ and 𝑅∪. Therefore, we should
use a for loop to iterate over each element of these arrays. If

an element is the same in both 𝑅∩ and 𝑅∪, we should mark

the vertex and add it to a set named 𝑓 𝑜𝑢𝑛𝑑 (lines 9-15).

Next, we should reduce the size of the Intersection Graph

(𝐺∩) using the 𝑓 𝑜𝑢𝑛𝑑 set. Currently, the 𝑓 𝑜𝑢𝑛𝑑 set consists

of all the vertices with the same value across all the snap-

shots. Therefore, we should remove the incoming edges of

those vertices that are in the 𝑓 𝑜𝑢𝑛𝑑 set using the RemoveIn-

comingEdges function. We should also remove the edges in

the delta batches that have the same destination as those in

the 𝑓 𝑜𝑢𝑛𝑑 set using the RemoveDeltaAddition function

(lines 16-21). Then, we can rename the reduced 𝐺∩ graph to

𝐺𝑄𝑅𝑆 . Finally, we should incrementally add the reduced-size

delta batches to the Q-Relevant Subgraph (𝐺𝑄𝑅𝑆 ) to deter-

mine results of query 𝑄 on each snapshot (lines 22-25).

The function RemoveIncomingEdges(Graph 𝐺 , Vertex

𝑣) has two inputs: Graph 𝐺 and Vertex 𝑣 . It iterates over

each vertex in 𝐺 , and if there is an edge leading to ver-

tex 𝑣 , it removes that edge (lines 26-31). The function Re-

moveDeltaAddition(Vertex 𝑣) takes a vertex as its input

and iterates over all the edges in the delta batches. If it finds

an edge to vertex 𝑣 , it removes that edge (lines 32-41).

4 Concurrent Incremental Computations
Starting from the Q-Relevant Subgraph 𝐺𝑄𝑅𝑆 , the query re-

sults for each snapshot can be found by incremental com-

putation of the addition batch (Δ𝑖 ). One way to calculate

query results for all snapshots is through a sequence of snap-

shot evaluations, i.e., 𝑛 rounds of incremental computation

(𝐼𝑁𝐶𝑅𝐸𝑀𝐸𝑁𝑇 (𝐺𝑄𝑅𝑆 ,Δ
′
𝑖 ), where 𝑖 = 0, ..., 𝑛 and Δ′𝑖 is the

reduced batch corresponding to Δ𝑖 ). However, this approach

has two issues: 1) resource under utilization and 2) data lo-

cality is not fully exploited. First, incremental computation

(especially for edge additions) is lightweight in comparison to

full query evaluation, potentially leading to underutilization

of machine resources. Second, same edges, either present in

𝐺𝑄𝑅𝑆 or Δ′𝑖 , may be traversed multiple times across different

snapshots, worsening cache locality.

Instead of evaluating snapshots one by one, we propose

concurrent evaluation. An augmented graph with versioning

and snapshot-oblivious frontier are used for efficiency.

4.1 Versioned Graph Representation
We augment the Q-Relevant Subgraph𝐺𝑄𝑅𝑆 with extra edge

versioning information to show which snapshots an edge

belongs to. A 64-bit variable is used for storing such ver-

sion information of an edge (more bits can be added for
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Algorithm 1 Finding Q-Relevant Subgraph

1: Inputs: Intersection Graph (𝐺∩); Union Graph (𝐺∪);
2: Addition Edges Batches (Δ0, Δ1, ..., Δ𝑛); Query (𝑄).

3: Output: Results for Solving Query (𝑄) on Each Snapshot of

the Graphs (𝑅0, 𝑅1, ..., 𝑅𝑛).

4: ▷ Compute 𝑄 on 𝐺∩ and 𝐺∪ (𝑚 is number of vertices)

5: 𝑅∩[1,𝑚]: array results for 𝐺∩
6: 𝑅∪[1,𝑚]: array results for 𝐺∪
7: 𝑅∩[1,𝑚]← Compute (𝐺∩, 𝑄)
8: 𝑅∪[1,𝑚]← Compute (𝐺∪, 𝑄)
9: ▷ Find Values That Are Same On Both 𝐺∩ and 𝐺∪
10: 𝑓 𝑜𝑢𝑛𝑑 : set for storing vertices with precise values

11: for each 𝑖 ∈ [1,𝑚] do
12: if 𝑅∩[𝑖] == 𝑅∪[𝑖] then
13: 𝑓 𝑜𝑢𝑛𝑑 ← 𝑖𝑛𝑠𝑒𝑟𝑡 (𝑖)
14: end if
15: end for
16: ▷ Reduce the size of 𝐺∩ and delta batches and Find 𝐺𝑄𝑅𝑆

17: for each 𝑣 ∈ 𝑓 𝑜𝑢𝑛𝑑 do
18: RemoveIncomingEdges(𝐺∩, 𝑣)
19: RemoveDeltaAdditionBatches(𝑣)

20: end for
21: 𝐺𝑄𝑅𝑆 ← 𝐺∩
22: ▷ Add the Batches to 𝐺𝑄𝑅𝑆 and Find the Results

23: for each 𝑖 ∈ [0, 𝑛] do
24: 𝑅𝑖 ← Increment (𝐺𝑄𝑅𝑆 , Δ𝑖 )
25: end for
26: ▷ Function for removing the incoming edges

27: function RemoveIncomingEdges(Graph 𝐺 , Vertex 𝑣)

28: for each 𝑥 ∈ 𝐺 [𝑣].inNeighbors do
29: remove 𝑒𝑑𝑔𝑒 (𝑥 , 𝑣)

30: end for
31: end function
32: ▷ Function for removing edges from delta batches

33: function RemoveDeltaAdditionBatches(Vertex 𝑣)

34: for each 𝑖 ∈ [0, 𝑛] do
35: for each 𝑒𝑑𝑔𝑒 (𝑢, 𝑥 ) ∈ Δ𝑖 do
36: if 𝑥 == 𝑣 then
37: remove 𝑒𝑑𝑔𝑒 (𝑢, 𝑣)

38: end if
39: end for
40: end for
41: end function
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B C
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E

𝐺!"# = {𝐶 → 𝐴, 𝐶 → 𝐵, 𝐸 → 𝐶, 𝐸 → 𝐷}
∆$%= {𝐷 → 𝐶} ∆&%= {𝐵 → 𝐴, 𝐸 → 𝐴}
∆'%= {𝐵 → 𝐴} ∆(%= {𝐷 → 𝐶, 𝐸 → 𝐴}
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Figure 7. (a) Versioned Graph; and (b) the augmented ad-

jacency list (only lists for out-going edges are shown; bold

edges are 𝐺𝑄𝑅𝑆 edges; and there are 4 snapshots)

supporting greater than 64 snapshots). The bit at each lo-

cation indicates if the edge is present in the corresponding

snapshot. For edges that are common to all snapshots, their

version labels are all 1s (i.e., 1111....1111).
The augmented versioned graph has more edges than

the Q-Relevant Subgraph – edges in𝐺𝑄𝑅𝑆 plus the reduced

addition batches (𝐺𝑄𝑅𝑆 ∪ Δ′
0
∪ Δ′

1
∪ ...Δ′𝑛). Since 𝐺𝑄𝑅𝑆 is

reduced from the IntersectionGraph (𝐺∩), it contains a subset
of edges in 𝐺∩ that are common to all snapshots. Those

common edges are stored at the beginning of the adjacency

lists, followed by snapshot-specific edges.

An augmented graph is shown in Figure 7. 𝐺𝑄𝑅𝑆 has four

edges (edges in bold) that have 1111s as their version value in
the adjacency lists. Four graph snapshots are embedded into

the augmented graph, which can be obtained by adding Δ′
0

through Δ′
3
to 𝐺𝑄𝑅𝑆 , respectively. Edge ⟨𝐷 → 𝐶⟩ is present

in both snapshots 0 and 3, so its version number is 1001.
Edges ⟨𝐸 → 𝐶⟩ and ⟨𝐸 → 𝐷⟩ are common to all snapshots.

4.2 Concurrent Snapshot Evaluation
Now we describe how multiple snapshots are evaluated con-

currently. The traditional graph query evaluation, the out-

going edges of active vertices are evaluated by the edge

function and vertices that have their values changed will

be put into the frontier. In the concurrent snapshot evalua-

tion, there are two aspects to consider: 1) the ownership of

edges that must be checked when traversing the versioned

graph; and 2) the ownership of active vertices that help dis-

tinguish which vertex is active for which snapshot. The edge

ownership cannot be neglected as it affects the correctness

of concurrent snapshot evaluation. We show that the own-

ership of active vertices can be further relaxed for better

performance. In a basic concurrent evaluation design, it is

intuitive to maintain a separate frontier for each snapshot

since an active vertex may not be active for all snapshots;

however, this introduces extra overhead due to the mainte-

nance and access of multiple frontiers. Instead, UVVs employs

a design called snapshot-oblivious frontier, inspired by recent
works on concurrent graph query processing [35? ]. The

snapshot-oblivious frontier does not distinguish which vertex

is active for which snapshot; given a batch of snapshots, it

simply treats the vertex active for all snapshots by using a

single frontier, which is the union of all separate frontiers.

The correctness of snapshot-oblivious frontier is guaranteed
by the monotonic property of graph algorithms.

A B C

D E 𝐹

𝑆𝑒𝑝𝑎𝑟𝑎𝑡𝑒	𝑓𝑟𝑜𝑛𝑡𝑖𝑒𝑟𝑠:

𝑆𝑛𝑎𝑝𝑠ℎ𝑜𝑡 − 𝑜𝑏𝑙𝑖𝑣𝑖𝑜𝑢𝑠	𝑓𝑟𝑜𝑛𝑡𝑖𝑒𝑟:

𝐹! = 𝐴, 𝐶 , 𝐹" = {𝐵}

𝐹#$ = 𝐹! ∪	𝐹" = {𝐴, 𝐵, 𝐶}

10 01 11 01 01

Figure 8. Snapshot-oblivious frontier and concurrent snap-

shot traversal.
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Algorithm 2 Concurrent Evaluation of Snapshots

1: function BatchEvaluation(𝐺 , 𝑛, Δ[ ...], 𝑓 )
2: (𝐹𝑠𝑜 ,𝐹𝑛𝑒𝑥𝑡 ) = (∅, ∅) ▷ Snapshot-oblivious frontier

3: 𝑅𝑖∈ [0:𝑛−1] = 𝑅𝑄𝑅𝑆 ▷ Initialize results for each snapshot

4: parfor Δ𝑖 in Δ[ ...] do ▷ Processing addition batches

5: parfor ⟨𝑢 → 𝑣, 𝑤⟩ in Δ𝑖 do
6: if 𝑓 (⟨𝑢 → 𝑣, 𝑤⟩) improves 𝑅𝑖 [𝑣 ] then
7: 𝑅𝑖 [𝑣 ]=𝑓 (⟨𝑢 → 𝑣, 𝑤⟩)
8: 𝐹𝑠𝑜=𝐹𝑠𝑜 ∪ {𝑣}

▷ Concurrent snapshot evaluation

9: while 𝐹𝑠𝑜 ≠ ∅ do
10: parfor 𝑣 in 𝐹𝑠𝑜 do
11: for 𝑥 in 𝑣’s out-going neighbors do
12: for 𝑖 from 0 to 𝑛 − 1 do

▷ Check if the edge belongs to snapshot 𝑖
13: if snapshotHasEdge(𝑖 ,⟨𝑣 → 𝑥 ⟩) then
14: if 𝑓 (⟨𝑣 → 𝑥, 𝑤⟩) improves 𝑅𝑖 [𝑥 ] then
15: 𝑅𝑖 [𝑥 ]=𝑓 (⟨𝑣 → 𝑥, 𝑤⟩)
16: 𝐹𝑛𝑒𝑥𝑡=𝐹𝑛𝑒𝑥𝑡 ∪ {𝑥 }
17: swap(𝐹𝑛𝑒𝑥𝑡 , 𝐹𝑠𝑜 )
18: 𝐹𝑛𝑒𝑥𝑡 = ∅
19: end while
20: return 𝑅𝑖∈ [0:𝑛−1]
21: end function

Figure 8 shows an example of snapshot-oblivious frontier
and concurrent snapshot traversal. Two snapshots are consid-

ered in this case with their frontiers 𝐹0 and 𝐹1. The out-going

edges of active vertices in 𝐹0 and 𝐹1 have their ownership

checked before the edge function can be applied. For exam-

ple, active vertex 𝐴’s out-going edge ⟨𝐴→ 𝐸⟩ that is owned
by snapshot 𝑆0 (the version label is 01) will be evaluated for

updating the results of 𝑆0, while ⟨𝐴→ 𝐷⟩ will not be evalu-
ated for 𝑆0 as it only belongs to 𝑆1. Regarding the ownership

of active vertices, because of the use of snapshot-oblivious
frontier 𝐹𝑠𝑜 , vertex 𝐵’s out-going edges are blindly evaluated

for both snapshots even if it is only active for 𝑆1. The bene-

fits of using snapshot-oblivious frontier (without maintaining

and checking separate frontiers) outweighs the extra compu-

tation overhead it introduces. Similar observation has been

made in Glign [? ] about the query-oblivious frontier.
The concurrent snapshot evaluation in Algorithm 2 takes

Q-Relevant Subgraph as input and to which addition batch

Δ𝑖 is applied to incrementally compute query results on snap-

shot 𝑖 . The incremental computation for edge additions adds

vertex 𝑣 to the frontier if a new edge ⟨𝑢, 𝑣⟩ in addition batch

improves the vertex value of 𝑣 (Line 4 to 8), e.g., a shorter

shortest path is found after adding the edge. Iterative compu-

tation continues till the frontier becomes empty. At Line 10,

the snapshot-oblivious frontier does not distinguish between

snapshots; it evaluates the vertex for all snapshots which

may introduce redundant computation but still outweighs

the overhead of tracking separate frontiers for each snap-

shot. Out-going edges of active vertices are evaluated for

snapshots that contain the edges (Line 12 to 16).

5 System
Based on the proposed UVV finding algorithm and concur-

rent snapshots query evaluation engine, we developed a

system for shared-memory. To our knowledge, this is the

first system of its kind that supports concurrent evolving-

graph query evaluation while using a very small portion of a

large graph. Our system is built upon Risgraph as it pro-
vides themost optimized implementation of KickStarter-
based incremental approach that serves as the baseline
in our evaluation. Our UVV system consists of several

components described below:

• An evolving graph engine maintains data structures of

the multiple snapshots. It is built on the Risgraph [12]

streaming graph engine and adopts version manage-

ment of Fig 7(b). Risgraph leverages a fast addition

query function and uses a pull-push hybrid mecha-

nism and our support concurrent snapshots traversal.

• A graph reduction phase is added to the system that re-

duces the graph size to create a query-relevant graph.
• We employ a snapshots scheduler, which takes user

queries as input and maximizes the reuse of snapshots.

A snapshot-oblivious frontier mechanism is added to

Risgraph. Users can pick the snapshots of interest.

• Finally, a simple programming interface is provided

where the user can program by following the vertex-

centric paradigm and providing the system with the

query source and snapshots to get query results.

System Execution Engine Two execution models are

supported: concurrent and non-concurrent. Both perform

graph reduction for a given user query. As Algorithm 4 de-

picted, we query intersection graph and union graph to find

UVVs. The system then deletes all incoming edges of UVV

vertices to create the query-relevant subgraph. The overhead

of this step is included in query evaluation time.

In the non-concurrent execution mode, the system exe-

cutes a query targeting multiple snapshots in two steps: the

scheduling phase and the computation phase. During the

scheduling phase, the query execution plan follows Fig 3, and

the engine follows the scheduling order to perform addition-

only incremental computation for all the queried snapshots.

6 Performance Evaluation
We have successfully implemented our idea on top of the

RisGraph [12] system which is the fastest streaming system

that supports incremental algorithms for handling both edge

additions and deletions. We made it suitable for analyzing

an evolving graph by performing incremental computations

incrementally over a versioned graph representation. We

conducted our experiments on a shared memory machine on

Google Cloud that has two Intel Xeon 2.60 GHz processors

with 48 cores and 768GB memory. All codes are compiled by

g++ version 9.4.0 and we run them on Ubuntu 20.04.

Benchmarks. We evaluated five types of graph bench-

marks: BFS (Breadth First Search), SSSP (Single Source Short-

est Path), SSWP (Single Source Widest Path), SSNP (Single
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Table 2. Benchmarks and their Edge Functions.

Alg. EdgeFunction (𝑒 (𝑢, 𝑣))
BFS 𝐶𝐴𝑆𝑀𝐼𝑁 (𝑉𝑎𝑙 (𝑣),𝑚𝑖𝑛(𝑉𝑎𝑙 (𝑢) + 1, 𝑣𝑎𝑙 (𝑣)))
SSWP 𝐶𝐴𝑆𝑀𝐴𝑋 (𝑉𝑎𝑙 (𝑣),𝑚𝑖𝑛(𝑉𝑎𝑙 (𝑢),𝑤𝑡 (𝑢, 𝑣)))
SSNP 𝐶𝐴𝑆𝑀𝐼𝑁 (𝑉𝑎𝑙 (𝑣),𝑚𝑎𝑥 (𝑉𝑎𝑙 (𝑢),𝑤𝑡 (𝑢, 𝑣)))
SSSP 𝐶𝐴𝑆𝑀𝐼𝑁 (𝑉𝑎𝑙 (𝑣),𝑉𝑎𝑙 (𝑢) +𝑤𝑡 (𝑢, 𝑣))
Viterbi 𝐶𝐴𝑆𝑀𝐴𝑋 (𝑉𝑎𝑙 (𝑣),𝑉𝑎𝑙 (𝑢)/𝑤𝑡 (𝑢, 𝑣))

Table 3. Edges and Vertices of the Input Graphs.

Input Graph | Edges | | Vertices | |Avg degree|

LiveJournal (LJ) [6] 68M 4.8M 28.26

Orkut (OR) [36] 117M 3.1M 76.28

WikipediaLinks (Wen) [27] 437M 13.5M 64.32

Twitter (TW) [28] 1.46B 41.6M 70.51

Friendster (Fr) [23] 2.58B 68.3M 55

Table 4. Average Execution Time for KickStarter-based (KS)

method in milliseconds, and speedup for CommonGraph

(CG), Q-Relevant Subgraph (QRS), Concurrent QRS (CQRS)

given 64 Snapshots and 150,000 batch size.

G Alg. BFS SSSP SSWP SSNP Viterbi

LJ

KS 1562.1 2292.2 2249.6 2183.0 2677.5

CG 1.17× 1.24× 1.32× 1.39× 1.07×
QRS 1.30× 1.53× 2.08× 2.43× 1.67×
CQRS 3.60× 2.01× 8.09× 7.62× 8.87×

OR

KS 905.9 1361.7 1499.1 1330.5 1310.2

CG 1.11× 1.06× 1.44× 1.17× 1.08×
QRS 1.56× 1.14× 1.60× 1.53× 1.25×
CQRS 3.69× 3.72× 8.37× 3.76× 3.03×

Wen

KS 919.3 1850.1 1391.9 994.2 1007.3

CG 1.23× 1.42× 1.37× 1.46× 1.10×
QRS 1.55× 1.77× 1.85× 2.25× 1.52×
CQRS 3.07× 6.19× 11.7× 5.90× 3.56×

TW

KS 971.8 1997.6 1993.2 1304.9 1774.7

CG 1.06× 1.86× 1.61× 1.20× 1.03×
QRS 1.44× 2.94× 3.44× 1.51× 2.61×
CQRS 3.77× 8.88× 10.23× 6.01× 8.25×

Fr

KS 1349.8 2680.9 1951.6 1824.5 2968.5

CG 1.32× 1.13× 1.25× 1.2× 1.16×
QRS 2.08× 1.4× 3.57× 4.3× 1.82×
CQRS 6.5× 8.19× 9.57× 12.23× 11.95×

Source Narrowest Path), and Viterbi. Table 2 lists the bench-

marks along with their edge functions.

Graph Data Sets. We used 5 real-world input graphs, as

shown in Table 3. The range for the number of vertices in

our input graphs is from 68M to 2.6B, and the range for the

number of edges is from 4.8M to 68.3M.

6.1 Speedups
In our experiments we compare the execution times of query

evaluation for five input graphs and 5 benchmarks across a se-

quence of 64 snapshots. Between two consecutive snapshots

there are 150,000 edge updates, half of them are additions

and half are deletions. We present our results in Table 4.

KickStarter-based (KS) baseline incremental approach

does full computation on the first snapshot followed by

repeated incremental processing of addition and deletion

batches to get results for subsequent snapshots (see Fig-

ure 2(b)). The first row of Table 4 for each benchmark displays

the KS execution times in milliseconds. Our implementation

is based on Risgraph as it represents the most optimized

implementation of KickStarter.

For CommonGraph (CG) we present results for the best
performing implementation [1] which is the work-sharing

approach and present its speedups over KS in the second

row of Table 4 for each benchmark. As shown in Table 4, we

did not observe a substantial speedups when implementing

from CommonGraph because the RisGraph system is highly

optimized, and the deletion operation is not as expensive

compared to prior systems. The third row of Table 4 gives

the speedup achieved by the Q-Relevant Subgraph work-
sharing (QRS) method over the KickStarter-based method.

The QRS method significantly reduces the size of the graph

over which incremental computations are performed and

hence leads to a considerable speedup in obtaining results

for individual snapshots. However, there is overhead asso-
ciated with generating the QRS graph (overhead cost)
which we take into account by including it in the to-
tal query evaluation time. The QRS approach yields
speedups ranging from 1.25× to 4.3× over KS.
The fourth row of Table 4 gives the speed-up achieved

by Concurrent Q-Relevant Subgraph (CQRS) over the
KickStarter-based implementation. In this technique, we con-

currently add the additional delta batches to the QRG. We
have included the time for QRS generation (overhead
cost) in query evaluation time. CQRS yields speedups
ranging from 2.01× and 12.23× over KS.

6.2 UVV Detection and QRS Generation
After detecting UVVs, we are able to determine the fraction

of vertices who results need to be updated incrementally.

After removing incoming edges of UVV vertices, the fraction

of edges remaining in QRS is also known. The percentage of

vertices ranges from 0.3% to 42% and edges involved incre-

mental computation ranges from 0.16% to 32% (see Figure 9).

This large reduction is due to high accuracy with which

UVVs are detected (see Figure 10).

Next we present the portion of QRS and CQRS execution

times spent on QRS generation. Figure 11 shows the exe-

cution times for all methods normalized to the KickStarter-

based approach (KS). The red segments in the QRS and CQRS

9
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(green bars). This experiment uses 64 snapshots and a batch size of 150,000 edge updates (half additions and half deletions).
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Figure 11. The normalized execution times for Kickstarter-based (KS), CommonGraph Work-Sharing (CG), Q-Relevant

Subgraph (QRS), and Concurrent Q-Relevant Subgraph (CQRS) are presented with a breakdown of QRS generation time

(overhead cost) and query evaluation times for 64 snapshots and 150,000 edge updates (half additions and half deletions).

bars represent the QRS generation times. The QRS genera-

tion consists of four steps. First, we solve the query on the

intersection graph. Then, we incrementally add the missing

edges to the intersection graph to obtain the results on the

union graph. We compare the two value arrays, and if we

find the same value for a node in both the 𝐺∪ and 𝐺∩ ar-

rays, we should remove the incoming edges for that vertex.

However, due to the much larger number of matches than

mismatches, we implement this step in reverse. Instead of

removing the incoming edges of the matching values, we

add incoming edges for the mismatching values. On average,

the QRS generation time accounts for 18.45%/56.01% of the

total execution time for QRS/CQRS.

6.3 Sensitivity to Number of Snapshots
We studied the performance of UVV for 32, 64, and 128

snapshots. Figure 12(a) shows high speedups across varying

number of snapshots, benchmarks, and graphs. Speedups for

64 and 128 snapshots are close. While the speedups for 32

snapshots are lower. This is because the resources available

on our server are not fully utilized by 32 snapshots but are by

64 and 128 snapshots. We studied the sensitivity to different

batch sizes for the LiveJournal graph. We chose LiveJournal

for this experiment because it is our smallest graph, allowing

us to observe the effects of changes in batch sizes more

clearly. Figure 12(b) shows that larger batch sizes give lower

speedups because they lead to more updates and fewer UVVs.
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Figure 12. (a) Sensitivity to the number of snapshots (32, 64,

and 128) with batches of 150K edge updates for the LiveJour-

nal graph; (b) Sensitivity to batch sizes of 50K, 100K, 150K,

200K, and 250K for the LiveJournal and the SSSP algorithm.

7 Related Work
Evolving graphs. Recent works on dynamic graphs are

Common Graph [1], RisGraph [12], and Tegra [19]. Com-

mon Graph transforms all deletions into additions by using
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the common subgraph present in all snapshots. Query is exe-

cuted on this graph and then missing edges are added incre-

mentally for each snapshot. In this paper we exploited UVVs

while preserving all the benefits of the Common Graph. In

addition, unlike Common Graph, incremental computations

are done concurrently over a versioned graph representation.

RisGraph and Tegra explicitly process deletions and addi-

tions. For deletions they use the KickStarter [49] algorithm.

RisGraph uses a new data structure for quick edge addi-

tions and removals, but this leads to memory size increase of

3.25x to 3.38x. Tegra offers an API for efficient querying over

time windows, using a compact in-memory graph format.

Both RisGraph and Tegra use algorithms from streaming sys-

tems to facilitate incremental computations. GraphOne [25]

and Aspen [11] are other systems supporting dynamic and

streaming graphs, while Chronos [16] and FA+PA [48] op-

timize memory and computation costs. But they lack edge

deletion support when the goal is to perform query evalu-

ation. LiveGraph [58] presents an innovative approach to

handling dynamic graph updates using transactionally con-

sistent adjacency lists, significantly improving performance

for evolving graphs. Other systems use graph sharing when

simultaneous evaluating multiple queries on one graph ver-

sion [9, 54, 56].

Streaming graph analytics. These algorithms keep one

version of the graph that is continuously updated and the

results of an query which are progressively updated as new

batches of changes are made to the graph. There are two

key aspects of these systems, fast graph mutation and fast

incremental query evaluation. In contrast, all versions of

an evolving graph (i.e., multiple snapshots) are available at

the outset and thus graph mutation is not a concern as a

multi-versioned graph representation is created. However,

the incremental query evaluations developed for streaming

graph systems are leveraged by evolving graph systems (e.g.,

Tegra [19], Common Graph [1]). The primary focus of these

systems is on incremental computation, specifically on how

to effectively update query outcomes. Early streaming plat-

forms like Kineograph [10], Naiad [37], Tornado [46], and

Tripoline [20] only support edge additions. However, Kick-

starter [49] and GraphBolt [34] support edge deletions too.

8 Conclusion
We identified a new opportunity for optimizing the eval-

uation of an evolving graph query over large number of

snapshots. We showed that a large fraction of vertices whose

query results do not change can be identified and computed

once for all snapshots and exploited to minimize incremental

computations performed concurrently for all snapshots.
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