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1- Introduction 
 
Our goal in this project is to become familiar with synthesis using the Design Compiler tool 
and to analyze post-synthesis simulation using ModelSim. Next, we will get introduced to 
the SoC Encounter tool, which is used for ASIC design and ultimately provides us with a GDSII 
file—a file that can be sent to the foundry for chip fabrication. Finally, we will perform post-
layout simulation. In the second section, we explain the synthesis process and its post-
synthesis simulation. In the third section, we describe the layout design. And finally, in 
the last section, we examine the post-layout simulation. 

2- Synthesis and Post-Synthesis Simulation 
 
In this section, we describe the synthesis process and its post-synthesis simulation.    

2-1- Circuit Synthesis Using Design Compiler 
 
In this step, we use the Design Compiler tool to synthesize the ALU code designed in the 
previous assignment. The synthesis is completed successfully. A sample script used for this 
process is shown below.    
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Figure 1 shows the schematic of the synthesized circuit.    
 

 
 

Figure 1: Schematic of the Synthesized Circuit    

2-2- Generating Circuit Reports, SDF, and Output Netlist  
 
In this step, we generate the circuit reports, which include area, delay, and power 
consumption. These reports are produced using the following commands in the script.    

report_cell > /home/icic/Desktop/test/out/area.txt 
report_area > /home/icic/Desktop/test/out/area.txt 
report_port > /home/icic/Desktop/test/out/port.txt 

report_timing > /home/icic/Desktop/test/out/time.txt 
report_power > /home/icic/Desktop/test/out/power.txt 
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The results are shown in the following figures.    
 

 
 

Figure 2: Area Report 
 
 
 
 

 

 
 

Figure 3: Timing Report 
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Figure 4: Power Report 
 
Finally, the results are organized in Table 1. 

 

Table  1 : Synthesis Results 
 

 Power  
Delay Area Dynamic Leakage Condition 

0.19 ns 75219.884291 646.5836 uw 451.1447 nw typical 
 
In the next step, the netlist and SDF file must be generated, which is done using the following 
code snippet in the script.    

2-3- Considering Different Operating Conditions for Synthesis 
 
By considering the operating conditions low, typical, and fast, the results are obtained as 
shown in Table 2. 

 
Table  2 : Comparison of Fast, Slow, and Typical Synthesis Results 

 
 Power  

Delay Area Dynamic Leakage Condition 
0.31 ns 75219.884291 522.5579 uw 3.3255 uw low 
0.19 ns 75219.884291 646.5836 uw 451.1447 nw typical 
0.14 ns 75219.884291 783.0043 uw 2.2312 uw fast 

write -f verilog -output 
/home/icic/Desktop/test/out/Comlex_ALU_netlist.v -hierarchy 
write_sdf out/Comlex_ALU.sdf 
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These conditions are presented in the table below.    
 

Table  3 : Different operational conditions 

 
 
The target circuit was successfully synthesized using all three libraries (slow, typical, and fast), 
and the results of each synthesis were saved and analyzed separately. The results showed 
that there was no noticeable difference in area across the three conditions. This is because 
the circuit is relatively small, which reduces the likelihood of varying synthesis results. For 
instance, in the fast case, if there were an opportunity to reduce the number of gates in the 
critical path, such a synthesis would be beneficial. However, due to the small size of the circuit, 
only one synthesis strategy was applicable across all conditions, which explains the identical 
area results. 
However, to increase or decrease the circuit speed, other parameters can be used. One such 
parameter is temperature. Lowering the temperature reduces the threshold voltage (V_th), 
which—based on the transistor current equation—increases the current and thus 
the dynamic power consumption. On the other hand, increasing the temperature leads to 
higher leakage current. Another way to control performance is by adjusting the supply 
voltage (V_dd). Increasing V_dd significantly increases dynamic power (quadratically) 
and static power (linearly). However, a higher V_dd also boosts the circuit's current, which 
improves speed. 
In conclusion, as circuit speed increases, power consumption also increases, which fully 
explains the observations in the results above. 

2-4- Analyzing the Impact of Optimization Constraints 
 
Optimization of area, power, and speed is performed using the following commands. 
 
 

 
 

Table  4 : Comparison of Different Optimizations 
 

 Power  
Delay Area Dynamic Leakage Optimization 

0.19 ns 75219.884291 646.5836 uw 451.1447 nw Area 
0.15 ns 75742.129068 631.5803 uw 453.4206 nw Speed 
0.24 ns 81184.119702 619.6754 uw 477.2386 nw Power 

 

set_max_delay 0.15 -from valid_reg -to valid 
set_max_area 0 
set_max_dynamic_power 0 
set_max_leakage_power 0 
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As observed, area optimization results in minimized area. In speed optimization, the delay is 
minimized, but the area increases. In power optimization, both area and delay increase, but 
the power consumption is reduced. 

2-5- Post-Synthesis Simulation 
 
In this section, we perform post-synthesis simulation using the netlist and SDF file. For this 
purpose, we use the ModelSim software. The obtained results are shown in the figure below. 
As can be seen, the simulation is more realistic. This is because the SDF file contains the 
timing information of the design, making the simulation more accurate. 
 

 
 

Figure 5: Post-Sysnthesis Simulation 
 
The comparison of results shows that the post-synthesis simulation is accurate, which 
indicates that the synthesis stage was carried out correctly.    

3- Layout Design and RC Extraction of the Circuit 

In this section, we use the Encounter tool to perform the layout design of the circuit, 
ultimately generating a GDSII file. In Section 2, using the Design Compiler (DC) tool, we 
converted the high-level code into a netlist, resulting in a gate-level circuit. Essentially, this 
step mapped the high-level design onto the technology cells. 

In this project, we feed the circuit into SOC Encounter, which performs placement and 
routing. The output of this step can be sent to the foundry for IC fabrication. 

Note that in this exercise, we do not perform optimization using the DC tool. This is because 
optimization may result in the removal of certain gates, potentially leaving unconnected wires 
in the final layout. 

The first step is to generate the SDF file for the circuit. This file is produced using the DC 
tool with the following command. 
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We navigate to the specified directory and provide the netlist generated from DC as input. 
Next, we specify the top module name, add the SDC file (which defines the timing 
constraints), and then add the LEF files. The LEF (Library Exchange Format) file contains 
the physical technology information, such as how many metal layers each cell has, their 
pitch, and other physical attributes. 

From the Design → Import Design menu, we proceed to import the files. For the LEF files, we 
add two: 

1. The LEF file for the standard cells. 
2. The LEF file related to antenna effects. 

The antenna effect refers to the phenomenon where long wires act like antennas, causing 
unwanted parasitic capacitance that may lead to noise or damage during fabrication. To 
manage this, we use an antenna library, which includes information about how each cell is 
affected by antenna rules. 

Then, under the Advanced tab and in the Power section, we define the global VDD and 
GND connections for the circuit. Every standard cell needs its VDD and VSS (GND) defined. 
Since VDD and GND come from external sources, we must specify the global power rails for 
the entire design. 

Next, as shown in the figure, we go to Specify Floorplan, activate the Die Size by option, and 
set a die size larger than the default to give enough room for placement and routing. 

 

 
 

Figure 6: Steps Followed in Encounter 
 
 

write_sdf out/Comlex_ALU.sdf 
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Next, to connect the core to VSS and VDD, two complete power rings (one for VSS and one 
for VDD) are created around the core. The internal VDD and VSS of the core are then 
connected to these rings. This approach helps to reduce power consumption, increase noise 
immunity, and optimize routing. 

Therefore, in the "Core to Left" and "Core to Right" settings, a margin is added to make room 
for the power rings. The result of this configuration is shown in the figure below. 

 

 
 

Figure 7: Steps Followed in Encounter 

As shown in the figure above, a gap has been created between the core and the die. Next, 
we go to the Connect Global Net section and connect the power (VDD) and ground 
(GND) cells to the global power and ground networks. 

The tie high concept refers to a technique in digital circuits where a node is not directly 
connected to VDD to represent logic '1'. This is because any noise on the VDD line could 
propagate to the node, causing instability. Instead, special cells called tie high and tie low are 
used. A tie high cell generates a noise-resistant digital logic '1', and a tie low cell generates a 
noise-resistant logic '0'. 

Then, we navigate to Power → Power Planning → Add Ring. Power rings are usually 
implemented using intermediate metal layers, as they need to connect to all parts of the 
design. The necessary modifications are made as shown in the following figure. 
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Figure 8: Steps Followed in Encounter 
 
In the figure below, it can be seen that the power rings have been added. 
 

 
 

Figure 9: Steps Followed in Encounter 
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By zooming in, the connections can also be observed. 
 

 
 

Figure 10: Steps Followed in Encounter 
 

Next, we need to add strips to the circuit—this means drawing additional metal lines that are 
connected to VDD and GND. If there is a cell located in the middle of the core that needs to 
be connected to power or ground, it will connect through these strips. This ensures a proper 
distribution of power lines across the design. 

This step can be done by navigating to: 
Power → Power Planning → Add Strip 

The figure below illustrates this process. 

 
 

Figure 11: Steps Followed in Encounter 
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Next, we perform a special route. The output after this step is shown in the figure below. 
 

 
 

Figure 12: Steps Followed in Encounter 
 

The next step is to perform the final routing and insert metal fillers to complete the final 
layout of the design. 

After placing the components, we move on to routing. To begin with, we need to route the 
clock (clk). For this, certain cells are added to the circuit to prevent clock skew, reduce clock 
voltage drop, and address other clock-related issues. 

 
 

 
 

Figure 13: Steps Followed in Encounter 
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After that, the clk, VDD, and VSS signals are connected to the cells. 
 

 
 

Figure 14: Steps Followed in Encounter 
 

Now, we perform timing analysis. 
 

 
 

Figure 15: Steps Followed in Encounter 
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The results are as follows: 

 
 

Figure 16: Steps Followed in Encounter 
 
At this stage, we need to use optimization techniques to try and improve the setup time. 
 

 
 

Figure 17: Steps Followed in Encounter 
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Now, we re-evaluate the results. 
 

 
 

Figure 18: Steps Followed in Encounter 

As shown in the image above, there are no negative values for setup time, indicating that the 
setup timing requirements are met. 

Now, let's analyze the hold time. 

 

 
 

Figure 19: Steps Followed in Encounter 

In the output, we observe that there are no negative values, which means the hold time 
requirements are also satisfied. 
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After this, we perform detailed routing of the circuit, leading to the result shown in the 
following figure. 

 
 

Figure 20: Steps Followed in Encounter 
 
Close-up View of the Routing Paths: 
 

 
 

Figure 21: Steps Followed in Encounter 
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Next, we perform post-route timing analysis for the setup time. 
 

 
 

Figure 22: Steps Followed in Encounter 
 
And we perform the same analysis for hold time as well. 
 

 
 

Figure 23: Steps Followed in Encounter 
 
Next, we perform the filler cell insertion step. 
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Figure 24: Steps Followed in Encounter 
 

In the next step, we proceed to verify the geometry and connectivity of the design. 
The positive result of each check is shown below. 

Geometry: 

 

 
 

Figure 25: Steps Followed in Encounter 
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Connectivity: 
 

 
 

Figure 26: Steps Followed in Encounter 
 
No issues are observed in the Violation Browser menu either. 
 

 
 

Figure 27: Steps Followed in Encounter 
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After this step, we proceed to Add Filler, which fills the gaps between cells to make the 
layout manufacturable by the foundry. 

After performing this step, the gaps between the cells are filled as shown below. 

 
 

Figure 28: Steps Followed in Encounter 

Now, we can perform the metal fill step to ensure balanced metal distribution across the 
circuit. 

In this step, all metal layers are selected, and the empty spaces are filled with the 
corresponding metal fill patterns. 

This results in the layout shown below. 

 

 
 

Figure 29: Steps Followed in Encounter 
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Next, we perform geometry verification again. 
 

 
 

Figure 30: Steps Followed in Encounter 
 

Another important output from the layout design stage is the RC Extraction, which produces 
a .spef file containing the parasitic resistance and capacitance data of the circuit. 
This file was extracted from the Timing → Extract RC menu and has been attached. 
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In addition, other files such as the GDS file and the netlist were also extracted and attached. 

In the final step, we determine the smallest possible die size through a trial-and-
error approach. Various die sizes were tested starting from the initial stage to find the most 
suitable size for this design. 

The best estimated die size for this circuit was found to be approximately 386×386. The 
process involved initially setting the size to 350, then checking for any violations. Since 
violations were present, the size was gradually increased in steps (typically by doubling or 
halving) until a size was reached that produced no violations. 

4- Post-Layout Simulation 

To perform this task, the following files are required: 

1. Netlist Output from Encounter: This file needs some modifications. Specifically, 
instead of the Architecture block, we replace it with the line initial 
$nsda_module();. Since the netlist is written in Verilog, we must remove 
everything except the input/output definitions. Given the netlist was about 15,000 
lines, we wrote a Java program to automate this cleanup. The Java code is included in 
the project’s compressed archive. 

2. RC Extraction Output (.spef): This file is generated from Encounter and contains 
parasitic resistance and capacitance data. 

3. OSU Spice File: Named osu018_stdcells.sp, this file is the required library to 
convert the netlist into a usable SPICE format. 

4. Transistor-Level Models for PMOS and NMOS: For this, you can use 
the tsmc018.m file. 

5. Co-Simulation Support between VSIM and HSIM: Enabled via 
the libvpihsim.so library found in: 
/opt/synopsis/HSIM/hsimplus/platform/linux/bin/ 

6. cosim.cfg File: This configuration file should contain the line: 
Set_args top.sp 

7. top.sp File: The top-level SPICE file for the design. 
8. SPICE Model of the Main Module: Required for transistor-level simulation. 
9. Testbench File: To verify the functional behavior of the design. 

Finally, place all these files in a single folder and use ModelSim to perform the simulation. 
The post-layout simulation results are shown in the figure below and are in full agreement 
with the previous results, indicating that the layout stage was completed successfully. 
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Figure 31: Steps Followed in Encounter 
 
 
 
 
 


