

Sharif University of Technology

Department of Computer Engineering

System on Chip Desing Projects
RTL Design Using IP Cores

Mahbod Afarin

November 2016

1

1- Overview

Our goal is to design a complex ALU in two different ways: as a regular design and as an IP
core. Ultimately, we will compare the two implementations in terms of area, delay,
and power consumption.

This ALU operates on matrices, where each matrix element is 16 bits wide: 8 bits for the
real part and 8 bits for the imaginary part of the complex number. As a result, this project
consists of three main parts:

1. Regular Design – A custom implementation of the ALU.
2. IP Core Design – Using a pre-designed and optimized IP core.
3. Comparison – Evaluating and comparing both designs.

As we know, IP cores are typically developed by expert engineers and are expected to be
highly optimized in every aspect. The objective of this project is to demonstrate the
efficiency and optimization of the IP core implementation.

For this project, we use the Verilog language and the Xilinx ISE software for simulation and
synthesis. Additionally, we target the Virtex-7 FPGA for implementation.

2- Non-IP Core Design for Complex ALU

Our goal is to design an ALU for complex numbers. This ALU performs three
operations: addition, subtraction, and multiplication.

• The addition and subtraction operations are handled within
the Complex_ALU module.

o When OP = 00, the ALU performs addition.
o When OP = 01, it performs subtraction.
o When OP = 10, it performs multiplication.

• The multiplication operation is carried out in a separate module
called complex_mul, which is instantiated inside the Complex_ALU module.

In the next section, we will replace the complex_mul module with an IP Core to evaluate its
performance and compare the results.

2-1- Functional Verification of the Complex ALU Without IP Core

For this purpose, we use the ISE software. After writing the testbench, we apply the
following input values to the circuit and observe the corresponding output results.

𝐴 = #
2 + 4𝑗 1 + 3𝑗 2 + 4𝑗
3 + 𝑗 2 + 2𝑗 6 + 7𝑗
7 + 2𝑗 2 + 7𝑗 𝑗

,

2

𝐵 = #
7 + 4𝑗 1 + 4𝑗 3 + 2𝑗
2 + 𝑗 1 + 7𝑗 2 + 2𝑗
2 + 3𝑗 3 + 2𝑗 1

,

2-1-1- Addition Operation Verification

The result of adding the two matrices above is as follows.

!
2 + 4𝑗 1 + 3𝑗 2 + 4𝑗
3 + 𝑗 2 + 2𝑗 6 + 7𝑗
7 + 2𝑗 2 + 7𝑗 𝑗

* + !
7 + 4𝑗 1 + 4𝑗 3 + 2𝑗
2 + 𝑗 1 + 7𝑗 2 + 2𝑗
2 + 3𝑗 3 + 2𝑗 1

* = ,
9 + 8𝑗 2 + 7𝑗 5 + 6𝑗
5 + 2𝑗 3 + 9𝑗 8 + 9𝑗
9 + 5𝑗 5 + 9𝑗 1 + 1𝑗

0

The simulation results are shown below, confirming the correctness of the addition
operation.

Figure 1: Simulation of the ALU Without IP Core for the Addition Operation

2-1-2- Subtraction Operation Verification

The result of subtracting the two matrices above is as follows.

!
2 + 4𝑗 1 + 3𝑗 2 + 4𝑗
3 + 𝑗 2 + 2𝑗 6 + 7𝑗
7 + 2𝑗 2 + 7𝑗 𝑗

* − !
7 + 4𝑗 1 + 4𝑗 3 + 2𝑗
2 + 𝑗 1 + 7𝑗 2 + 2𝑗
2 + 3𝑗 3 + 2𝑗 1

* = ,
−5 −𝑗 −1 + 2𝑗
1 1 − 5𝑗 4 + 5𝑗

5 − 𝑗 −1 + 5𝑗 −1 + 𝑗
0

The simulation results are shown below, confirming the correctness of the subtraction
operation.

3

Figure 2: Simulation of the ALU Without IP Core for the Subtraction Operation

2-1-3- Multiplication Operation Verification

The result of multipication the two matrices above is as follows.

!
2 + 4𝑗 1 + 3𝑗 2 + 4𝑗
3 + 𝑗 2 + 2𝑗 6 + 7𝑗
7 + 2𝑗 2 + 7𝑗 𝑗

*× !
7 + 4𝑗 1 + 4𝑗 3 + 2𝑗
2 + 𝑗 1 + 7𝑗 2 + 2𝑗
2 + 3𝑗 3 + 2𝑗 1

* = ,
−11 + 57𝑗 −36 + 38𝑗 −4 + 28𝑗
10 + 57𝑗 −9 + 62𝑗 13 + 24𝑗
35 + 60𝑗 −50 + 54𝑗 7 + 39𝑗

0

The simulation results are shown below, confirming the correctness of the multipication
operation.

Figure 3: Simulation of the ALU Without IP Core for the Multiplication Operation

2-2- Synthesis of the ALU Without IP Core and Analysis of Its Power, Delay, and

Area

In this section, we aim to obtain the power, delay, and area results for the non-IP core
design.

4

2-2-1- Power Analysis

To analyze power consumption, we use the XPower Analyzer tool in Xilinx ISE.
First, we need to generate a VCD (Value Change Dump) file.
To do this, we add the following code snippet to the testbench, which enables the creation
of the VCD file.

// The following code will generate a VCD file containing
// all of the nets in the instance t.uut. "t" is the
module name of the
// testfixture, "uut" is the instance name
// of the design being tested.

initial begin
$dumpfile ("invchn26.vcd"); // Change filename as
appropriate.
$dumpvars(1, t.uut);
end

As a result, the VCD file is generated in the project’s storage directory.
Next, from the Tools menu, we select XPower Analyzer.
Then, under the File tab, we choose Open Design and provide the appropriate input files to
proceed with the analysis.

Figure 4: Specifying the Required Inputs in the Open Design Section

5

The power consumption results in this case are shown in Figure 5. As illustrated,
the dynamic power consumption is 0.002 W, the static power consumption is 0.177 W, and
the total power consumption is 0.179 W.

Figure 5: Power Consumption Results of the System Without IP Core

2-3- Delay Analysis

To analyze the circuit's delay, we use the delay report.
This is shown in Figure 6.
As indicated in the figure, the critical path delay is 2.537 ns.

Figure 6: Delay Analysis of the Circuit Without IP Core

2-4- Area Analysis

To evaluate the area, we refer to the number of components used in the circuit, as shown
in the figure below. These component counts are organized in Table 1.

6

Figure 7: Area Analysis of the Circuit Without IP Core

Table 1 : Number of Components in the Circuit Without IP Core

Numbers of the component Components
12 8x8-bit multiplier
3 17-bit adder
3 17-bit subtractor
2 32-bit adder
6 1-bit register
2 144-bit register
2 2-bit register
2 32-bit register
3 48-bit register
1 2-bit comprator grater
2 32-bit comprator grater

101 1-bit 3-to-1 multiplexer
6 16-bit 3-to-1 multiplexer
1 32-bit 2-to-1 multiplexer
2 48-bit 2-to-1 multiplexer

3- IP Core-Based Design for Complex ALU

In this design, we replaced the complex number multiplier module with an IP Core.

3-1- Functional Verification of the IP Core-Based Design

For this purpose, we use Xilinx ISE. After writing the testbench, we apply the following input
values to the circuit and observe the corresponding output.

7

𝐴 = #
2 + 4𝑗 1 + 3𝑗 2 + 4𝑗
3 + 𝑗 2 + 2𝑗 6 + 7𝑗
7 + 2𝑗 2 + 7𝑗 𝑗

,

𝐵 = #
7 + 4𝑗 1 + 4𝑗 3 + 2𝑗
2 + 𝑗 1 + 7𝑗 2 + 2𝑗
2 + 3𝑗 3 + 2𝑗 1

,

3-1-1- Analysis of the Addition Operation

The result of adding the two matrices above is as follows.

!
2 + 4𝑗 1 + 3𝑗 2 + 4𝑗
3 + 𝑗 2 + 2𝑗 6 + 7𝑗
7 + 2𝑗 2 + 7𝑗 𝑗

* + !
7 + 4𝑗 1 + 4𝑗 3 + 2𝑗
2 + 𝑗 1 + 7𝑗 2 + 2𝑗
2 + 3𝑗 3 + 2𝑗 1

* = ,
9 + 8𝑗 2 + 7𝑗 5 + 6𝑗
5 + 2𝑗 3 + 9𝑗 8 + 9𝑗
9 + 5𝑗 5 + 9𝑗 1 + 1𝑗

0

The simulation results are shown below, confirming the correctness of the addition
operation.

Figure 8: Simulation of the ALU Using IP Core for the Addition Operation

3-1-2- Analysis of the Substraction Operation

The result of subtracting the two matrices above is as follows.

!
2 + 4𝑗 1 + 3𝑗 2 + 4𝑗
3 + 𝑗 2 + 2𝑗 6 + 7𝑗
7 + 2𝑗 2 + 7𝑗 𝑗

* − !
7 + 4𝑗 1 + 4𝑗 3 + 2𝑗
2 + 𝑗 1 + 7𝑗 2 + 2𝑗
2 + 3𝑗 3 + 2𝑗 1

* = ,
−5 −𝑗 −1 + 2𝑗
1 1 − 5𝑗 4 + 5𝑗

5 − 𝑗 −1 + 5𝑗 −1 + 𝑗
0

The simulation results are shown below, confirming the correctness of the subtraction
operation.

8

Figure 9: Simulation of the ALU With IP Core for the Subtraction Operation

3-1-3- Multiplication Operation Verification

The result of multipication the two matrices above is as follows.

!
2 + 4𝑗 1 + 3𝑗 2 + 4𝑗
3 + 𝑗 2 + 2𝑗 6 + 7𝑗
7 + 2𝑗 2 + 7𝑗 𝑗

*× !
7 + 4𝑗 1 + 4𝑗 3 + 2𝑗
2 + 𝑗 1 + 7𝑗 2 + 2𝑗
2 + 3𝑗 3 + 2𝑗 1

* = ,
−11 + 57𝑗 −36 + 38𝑗 −4 + 28𝑗
10 + 57𝑗 −9 + 62𝑗 13 + 24𝑗
35 + 60𝑗 −50 + 54𝑗 7 + 39𝑗

0

The simulation results are shown below, confirming the correctness of the multipication
operation.

Figure 10: Simulation of the ALU With IP Core for the Multiplication Operation

3-2- Analysis of Power, Area, and Delay for the IP Core-Based Design

In this section, we aim to obtain the power, delay, and area results for the IP core-based
design.

9

3-2-1- Power Analysis

We follow the same procedure as described in the previous section. The results are shown
in Figure 11. As seen in Figure 11, the total power consumption of the circuit is 0.178 W. As
expected, the IP-based design consumes less power than the non-IP design. This confirms
our expectation regarding the efficiency and optimization of the IP core implementation.

Figure 11: Power Consumption of the Circuit Using IP Core

3-2-2- Delay Analysis

Using the same method described in the previous section, we obtain the delay. As shown in
the figure below, the critical path delay is 2.313 ns. This delay is lower than that of the non-
IP design, further confirming our expectation regarding the superior efficiencyof the IP
core-based implementation.

Figure 12: Critical Path Delay of the IP Core-Based Circuit

10

3-2-3- Area Analysis

Using the same method described in the previous section, we obtain the area of the circuit.
The results are organized in Table 2. By comparing Table 1 (non-IP design) and Table 2 (IP-
based design), it is clear that the IP core-based design occupies less area, which further
confirms the optimization and efficiency of using an IP core.

Figure 13: Area Analysis of the IP Core-Based Circuit

Table 2 : Sorted Area Results of the IP Core-Based Circuit

Numbers of the component Components
2 32-bit adder
6 1-bit register
2 144-bit register
2 2-bit register
2 32-bit register
3 48-bit register
1 2-bit comprator grater
2 32-bit comprator grater

101 1-bit 3-to-1 multiplexer
6 16-bit 3-to-1 multiplexer
1 32-bit 2-to-1 multiplexer
2 48-bit 2-to-1 multiplexer

11

4- Comparison of Power, Delay, and Area Results: IP Core vs. Non-IP Core Design

In Table 2, we compare the power, delay, and area of the non-IP and IP core-based designs.
All three metrics—power consumption, critical path delay, and area—are improved in
the IP-based design. The reason for this improvement is that the IP core was designed by
expert engineers at Xilinx, who have extensive knowledge and experience in creating
highly optimized and efficient circuits from all aspects.

Table 3 : Comparison of Area, Delay, and Power Parameters Between IP Core-Based and
Non-IP Core Designs

With IP Without IP Parameters
0.178W 0.179W Power
2.313ns 2.537ns Delay

Smaller Area Bigger Area Area

