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Part 1: In the table 1 and table 2 we can see the execution time (seconds) and 
performance (Gflops) for LAPAK and naïve LU. As we can see in the tables, the 
execution time for LAPAK is much better compared to the execution time for naïve 
LU. It requires 2𝑛! 3$  operations for basic LU factorization and in total it requires 2𝑛" 
operations. 

Table 1: The execution time and performance for MKL LAPAK  

n 1024 2048 3072 4096 5120 
Execution time 

(Seconds)  0.120017 sec 0.655016 sec 1.830898 sec 4.530101 sec 8.285191 sec 
Performance 

(Gflops) 5.96438740067 8.74272240882 10.5562149459 10.1130161316 10.7998096041 

 
 

Table 2: The execution time and performance for naïve LU 

n 1024 2048 3072 4096 5120 
Execution time 

(Seconds) 4.178531 sec 34.906586 sec 115.258259 sec 288.866282 sec 542.736801 sec 

Performance 
(Gflops) 0.17131089434 0.16405566162 0.16768735706 0.1585958187 0.16486533651 

 
 
In figure 1, I show the execution time for LAPAK for different matrix size. As we can 
see in the figure, the execution time will rise as the matrix dimension is growing.  
 
 

 
Figure 1: Comparing the execution time for different matrix size for LAPAK 
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In figure 2, I show the execution time for naïve LU for different matrix size. As we 
can see in the figure, the execution time will rise as the matrix dimension is growing.  
 
 

 
Figure 2: Comparing the execution time for different matrix size for naïve LU 

 
Part 2: In this part first, I implemented blocked GEPP. There are two main problem 
with basic GE algorithm: 

• The first problem is when 𝐴(𝑖, 𝑖) becomes zero or very small. As we can see in 
the figure 3, it can lead to the problem if 𝐴(𝑖, 𝑖) becomes very small or zero 
because 𝐴(𝑖, 𝑖) is located denominator of the equation.  

• The second problem is the low performance of the algorithm. As we can see in 
figure 3, in the algorithm we use BLAS level 1 and BLAS level 2 in the 
algorithm and they have a very low performance compared to the BLAS level 
3. In the figure 4, we can see the performance of BLAS 1, BLAS 2, and BLAS 
3. As we can see in the figure, the performance of BLAS 3 is much better than 
the performance of BLAS 1 and BLAS 2.  
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naïve LU

𝑓𝑜𝑟	𝑖	 = 	1	𝑡𝑜	𝑛 − 1 
     𝐴(𝑖 + 1: 𝑛, 𝑖) 	= 	𝐴(𝑖 + 1: 𝑛, 𝑖)	/	𝐴(𝑖, 𝑖) … BLAS 1 (scale a vector) 
     𝐴(𝑖 + 1: 𝑛, 𝑖 + 1: 𝑛) 	= 	𝐴(𝑖 + 1: 𝑛	, 𝑖 + 1: 𝑛	) … BLAS 2 (rank-1 update) 
              −	𝐴(𝑖 + 1: 𝑛	, 𝑖) 	 ∗ 	𝐴(𝑖	, 𝑖 + 1: 𝑛) 

Figure 3: Basic GE algorithm 
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Figure 4: Comparting the performance of BLAS 1, BLAS 2, and BLAS 3 

 
For solving the first problem we need to find the maximum element of that column 
and we name it 𝐴(𝑘, 𝑖) and then swap it with 𝐴(𝑖, 𝑖). If 𝐴(𝑘, 𝑖) is zero it means and the 
A matrix is singular and if 𝐴(𝑖, 𝑖) is not zero, we will do swapping and the we will do 
the computation. For the second problem we should use blocking technique. In this 
technique we will do the computation block by block and we will delay the update of 
the tanning matrix. In the basic GE algorithm, we processed the matrix row by row, 
but in blocked GEPP we will process the matrix column by column. We can see the 
main idea of the blocked GEPP algorithm in the figure 5. We have step b which 
determines the number of the columns which we are going to process at a time. Then 
we will apply BLAS 2 to the blue part of the figure 6 to factorize it and we will get 
𝐴(𝑖𝑏: 𝑛	, 𝑖𝑏: 𝑒𝑛𝑑). Then we will update the pink park of the figure 6 in the same way as 
before.  
 

 
Figure 5: Blocked GEPP algorithm 

 We named it delay update because we will first update the blue part of the figure 6 
and then update the pink part. It means that we are delaying the update of the oink 
park. Finally, we should update the green part. The green part is BLAS 3 which is 
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the matrix multiplication. The performance of BLAS 3 is much higher than the BLAS 
1 and BLAS 2 and that is why the block GEPP has better performance compared to 
the basic GE. So, in total we will do blocked GEPP in three steps. The computing of 
the pink part is 𝑛"𝑏 and the computation of the green part is 𝑛! which is the major 
computation of this algorithm. Therefore, the computation of this algorithm will be 
𝑛!. The total complexity of this algorithm is (2n^3)/3. 
 

 
        Figure 6: blocked GEPP algorithm using BLAS level 3 

For the implementation part first, I implemented the basic blocked GEPP without any optimization 
and then I tried to optimized it. In the table 3, I shewed the execution time in seconds and the 
performance in Gflops for blocked GEPP. As we can see in the table, the execution time improves 
spectacularly compared to the previous versions, because we used BLAS 3 in the implementation 
of blocked GEPP and BLAS 3 has a better performance compared to the BLAS 1 and BLAS 2.   
 

Table 3: The execution time and performance for blocked GEPP 

n 1024 2048 3072 4096 5120 
Execution time 

(Seconds)  1.732467 sec 11.834723 sec 38.872354 sec 90.764567 sec 165.568436 sec 

Performance 
(Gflops) 0.41318413722 0.48388315141 0.49720047394 0.50474525472 0.54043202614 

 
In order to optimize the blocked GEPP, I did these changes in the basic blocked GEPP 
algorithm.  

1. The first optimization is to maximize the cache hit in the pink part of the figure 
6. We will do the computation of 𝐴(𝑖𝑏: 𝑒𝑛𝑑	, 𝑒𝑛𝑑 + 1: 𝑛) for each row and doing 
the computation row by row may lead to cache miss and it will happen when 
the cache size is bigger than each row. Therefore, loading the elements each 
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time from the memory will lead to huge additional execution time. In order to 
avoid that we can tile the computation and with this technique we will 
maximize the cache reuse for that part.  

2. We can also maximize the cache hit in the blue part of the figure 6. In the figure 
6, the factorization part (blue part) will completed column by column. 
Therefore, if the size of the column becomes too large, the cache misses will 
increase spectacularly because the size of the column will be bigger than the 
size of the cache. In order to avoid that we can tile it to maximize the cache hit 
for that part.  

3. The third optimization is optimizing the matrix multiplication for this 
algorithm. I removed all the boundary checks and maximize the register reuse 
for that to maximize the implementation of the matrix multiplication.  

4. Using BLAS 3 make the program faster compared to use BLAS 1 and BLAS 2. 
5. We can use register reuse in the computations to maximize register reuse and 

increase the execution time of the program.  

We applied the optimization scenarios to the program and in the table 4, we can see 
the results. As we can see in the table 4, the optimized version of blocked GEPP has 
a better performance compare to the naïve version.  
 

Table 4: The execution time and performance for blocked GEPP 

n 1024 2048 3072 4096 5120 
Execution time 

(Seconds)  1.6706056 sec 11.648641 sec 36.688847 sec 88.256897 sec 163.979251 sec 

Performance 
(Gflops) 0.42848406749 0.49161297539 0.52679095726 0.51908673483 0.5456695575 

 
 

 
Figure 7: The output of the program 


