

University of California, Riverside
Department of Computer Science & Engineering

Title: High-Performance Computing – Project 2
Solving Large Linear System

Student Name:
Mahbod Afarin

Student ID:
862186340

Fall 2020

2

Part 1: In the table 1 and table 2 we can see the execution time (seconds) and
performance (Gflops) for LAPAK and naïve LU. As we can see in the tables, the
execution time for LAPAK is much better compared to the execution time for naïve
LU. It requires 2𝑛! 3$ operations for basic LU factorization and in total it requires 2𝑛"
operations.

Table 1: The execution time and performance for MKL LAPAK

n 1024 2048 3072 4096 5120
Execution time

(Seconds) 0.120017 sec 0.655016 sec 1.830898 sec 4.530101 sec 8.285191 sec
Performance

(Gflops) 5.96438740067 8.74272240882 10.5562149459 10.1130161316 10.7998096041

Table 2: The execution time and performance for naïve LU

n 1024 2048 3072 4096 5120
Execution time

(Seconds) 4.178531 sec 34.906586 sec 115.258259 sec 288.866282 sec 542.736801 sec

Performance
(Gflops) 0.17131089434 0.16405566162 0.16768735706 0.1585958187 0.16486533651

In figure 1, I show the execution time for LAPAK for different matrix size. As we can
see in the figure, the execution time will rise as the matrix dimension is growing.

Figure 1: Comparing the execution time for different matrix size for LAPAK

0

1

2

3

4

5

6

7

8

9

10

1024 2048 3072 4096 5120

LAPAK

3

In figure 2, I show the execution time for naïve LU for different matrix size. As we
can see in the figure, the execution time will rise as the matrix dimension is growing.

Figure 2: Comparing the execution time for different matrix size for naïve LU

Part 2: In this part first, I implemented blocked GEPP. There are two main problem
with basic GE algorithm:

• The first problem is when 𝐴(𝑖, 𝑖) becomes zero or very small. As we can see in
the figure 3, it can lead to the problem if 𝐴(𝑖, 𝑖) becomes very small or zero
because 𝐴(𝑖, 𝑖) is located denominator of the equation.

• The second problem is the low performance of the algorithm. As we can see in
figure 3, in the algorithm we use BLAS level 1 and BLAS level 2 in the
algorithm and they have a very low performance compared to the BLAS level
3. In the figure 4, we can see the performance of BLAS 1, BLAS 2, and BLAS
3. As we can see in the figure, the performance of BLAS 3 is much better than
the performance of BLAS 1 and BLAS 2.

0

100

200

300

400

500

600

700

800

1024 2048 3072 4096 5120

naïve LU

𝑓𝑜𝑟	𝑖	 = 	1	𝑡𝑜	𝑛 − 1
 𝐴(𝑖 + 1: 𝑛, 𝑖) 	= 	𝐴(𝑖 + 1: 𝑛, 𝑖)	/	𝐴(𝑖, 𝑖) … BLAS 1 (scale a vector)
 𝐴(𝑖 + 1: 𝑛, 𝑖 + 1: 𝑛) 	= 	𝐴(𝑖 + 1: 𝑛	, 𝑖 + 1: 𝑛) … BLAS 2 (rank-1 update)
 −	𝐴(𝑖 + 1: 𝑛	, 𝑖) 	 ∗ 	𝐴(𝑖	, 𝑖 + 1: 𝑛)

Figure 3: Basic GE algorithm

4

Figure 4: Comparting the performance of BLAS 1, BLAS 2, and BLAS 3

For solving the first problem we need to find the maximum element of that column
and we name it 𝐴(𝑘, 𝑖) and then swap it with 𝐴(𝑖, 𝑖). If 𝐴(𝑘, 𝑖) is zero it means and the
A matrix is singular and if 𝐴(𝑖, 𝑖) is not zero, we will do swapping and the we will do
the computation. For the second problem we should use blocking technique. In this
technique we will do the computation block by block and we will delay the update of
the tanning matrix. In the basic GE algorithm, we processed the matrix row by row,
but in blocked GEPP we will process the matrix column by column. We can see the
main idea of the blocked GEPP algorithm in the figure 5. We have step b which
determines the number of the columns which we are going to process at a time. Then
we will apply BLAS 2 to the blue part of the figure 6 to factorize it and we will get
𝐴(𝑖𝑏: 𝑛	, 𝑖𝑏: 𝑒𝑛𝑑). Then we will update the pink park of the figure 6 in the same way as
before.

Figure 5: Blocked GEPP algorithm

 We named it delay update because we will first update the blue part of the figure 6
and then update the pink part. It means that we are delaying the update of the oink
park. Finally, we should update the green part. The green part is BLAS 3 which is

5

the matrix multiplication. The performance of BLAS 3 is much higher than the BLAS
1 and BLAS 2 and that is why the block GEPP has better performance compared to
the basic GE. So, in total we will do blocked GEPP in three steps. The computing of
the pink part is 𝑛"𝑏 and the computation of the green part is 𝑛! which is the major
computation of this algorithm. Therefore, the computation of this algorithm will be
𝑛!. The total complexity of this algorithm is (2n^3)/3.

 Figure 6: blocked GEPP algorithm using BLAS level 3

For the implementation part first, I implemented the basic blocked GEPP without any optimization
and then I tried to optimized it. In the table 3, I shewed the execution time in seconds and the
performance in Gflops for blocked GEPP. As we can see in the table, the execution time improves
spectacularly compared to the previous versions, because we used BLAS 3 in the implementation
of blocked GEPP and BLAS 3 has a better performance compared to the BLAS 1 and BLAS 2.

Table 3: The execution time and performance for blocked GEPP

n 1024 2048 3072 4096 5120
Execution time

(Seconds) 1.732467 sec 11.834723 sec 38.872354 sec 90.764567 sec 165.568436 sec

Performance
(Gflops) 0.41318413722 0.48388315141 0.49720047394 0.50474525472 0.54043202614

In order to optimize the blocked GEPP, I did these changes in the basic blocked GEPP
algorithm.

1. The first optimization is to maximize the cache hit in the pink part of the figure
6. We will do the computation of 𝐴(𝑖𝑏: 𝑒𝑛𝑑	, 𝑒𝑛𝑑 + 1: 𝑛) for each row and doing
the computation row by row may lead to cache miss and it will happen when
the cache size is bigger than each row. Therefore, loading the elements each

6

time from the memory will lead to huge additional execution time. In order to
avoid that we can tile the computation and with this technique we will
maximize the cache reuse for that part.

2. We can also maximize the cache hit in the blue part of the figure 6. In the figure
6, the factorization part (blue part) will completed column by column.
Therefore, if the size of the column becomes too large, the cache misses will
increase spectacularly because the size of the column will be bigger than the
size of the cache. In order to avoid that we can tile it to maximize the cache hit
for that part.

3. The third optimization is optimizing the matrix multiplication for this
algorithm. I removed all the boundary checks and maximize the register reuse
for that to maximize the implementation of the matrix multiplication.

4. Using BLAS 3 make the program faster compared to use BLAS 1 and BLAS 2.
5. We can use register reuse in the computations to maximize register reuse and

increase the execution time of the program.

We applied the optimization scenarios to the program and in the table 4, we can see
the results. As we can see in the table 4, the optimized version of blocked GEPP has
a better performance compare to the naïve version.

Table 4: The execution time and performance for blocked GEPP

n 1024 2048 3072 4096 5120
Execution time

(Seconds) 1.6706056 sec 11.648641 sec 36.688847 sec 88.256897 sec 163.979251 sec

Performance
(Gflops) 0.42848406749 0.49161297539 0.52679095726 0.51908673483 0.5456695575

Figure 7: The output of the program

