
CS 211: High Performance Computing Project 2
High Performance Sequential Codes for Solving Large Linear Systems

Due at 11:59 PM on Oct 21, 2019

Part 1 (50 points)

Attached is a Matlab program to solve the general linear system Ax=b and verify the

solution with the Matlab build-in solver. Write a C/C++ /Fortran program to solve the

linear system through the following two approaches and verify that the two approaches

give the same solution:

(1). Call the function dgetrf() in LAPACK (http://www.netlib.org/lapack/) to

perform the LU factorization of the coefficient matrix A and then call the function

dtrsm() in LAPACK to perform the forward substitution first and then call it

again to perform the backward substitution;

(2). Call the mydgetrf() and mydtrsm() implemented by yourself to perform

the LU factorization, forward substitution, and backward substitution.

Your C/C++ /Fortran functions mydgetrf() and mydtrsm() must follow the same

algorithm in the Matlab code. Do NOT perform any code optimization or use any

compiler optimization flag. Test your codes with random matrices of size 1000, 2000,

3000, 4000, 5000 on TARDIS. Compare the performance (i.e., Gflops) of the two

approaches.

Part 2 (50 points)

Implement the blocked GEPP algorithm in the lecture. (1). Solve the linear system

through your blocked version code using your own matrix multiplication code. (2).

Optimize your code to achieve as high performance as possible using any other

techniques available to you. Compare your performance with your un-optimized version

in Part 1.

Note that, in syllabus, we emphasize for ALL homework assignments: “Please make sure

that your programs are properly documented and indented. Provide instructions on how

to run your programs, give example runs, and analyze your results.” Please test your code

on TARDIS and submit all source codes and a detailed report in PDF format into

blackboard.

http://www.netlib.org/lapack/

function mylu(n)

A=randn(n,n); b=randn(n,1); Abk=A; pvt = 1:n;
%Factorize A. Your task: transform this part to mydgetrf().
for i = 1 : n-1,
 % pivoting %
 maxind=i; max=abs(A(i,i));
 for t=i+1:n,
 if (abs(A(t,i))>max)
 maxind=t; max=abs(A(t,i));
 end
 end
 if (max==0)
 disp ('LUfactoration failed: coefficient matrix is singular'); return;
 else
 if (maxind ~= i)
 %save pivoting infomation
 temps=pvt(i);
 pvt(i)=pvt(maxind);
 pvt(maxind)=temps;
 %swap rows
 tempv=A(i,:);
 A(i,:)=A(maxind,:);
 A(maxind,:)=tempv;
 end
 end
 %factorization
 for j = i+1 : n,
 A(j,i) = A(j,i)/A(i,i);
 for k = i+1 : n,
 A(j,k) = A(j,k) - A(j,i) * A(i,k);
 end
 end
end
%verify my factorization with Matlab for small matrix by printing results on screen. May skip in your code
myfactorization=A
mypivoting=pvt
[Matlab_L, Matlab_U, Matlab_P]=lu(Abk)

%forward substitution. Your task: transform this part to mydtrsm().
y(1) = b(pvt(1));
for i = 2 : n,
 y(i) = b(pvt(i)) - sum (y(1:i-1) .* A(i, 1:i-1));
end
% back substitution. Your task: transform this part to mydtrsm().
x(n) = y(n) / A(n, n);
for i = n-1 : -1 : 1,
 x(i) = (y(i) - sum (x(i+1:n) .* A(i, i+1:n))) / A(i,i);
end
%Matlab solve. Your task: call dgetrf() to factorize and dtrsm() twice (back and forward substit.) to solve.
xx= Abk\b;
%verify my solution with matlab. Your task: verify your solution with the solution from LAPACK.
Solution_Difference_from_Matlab=norm(x'-xx)

