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1- Register Reuse 
 
Part 1.  
 
Wasted time for dgemm0: 
 
In the innermost loop, we have 4 access to the memory. There are 3 loads from loading 
𝑎[𝑖 × 𝑛 + 𝑘], 𝑏[𝑘 × 𝑛 + 𝑗], and 𝑐[𝑖 × 𝑛 + 𝑗]. In addition of 3 loads, we have one store for 
𝑐[𝑖 × 𝑛 + 𝑗]. Each access to the memory will takes 100 cycles and also, we have 3 loops 
with 𝑛 = 1000. Therefore, the total cycles to access the memory will be 4 × 100 × 10!. 
The clock frequency for the computer is 2𝐺ℎ𝑧; Therefore, the wasted time will be:  
 

𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑡ℎ𝑒	𝑐𝑦𝑐𝑙𝑒𝑠 = (4 × 100 × 10!) = 4 × 10""	𝑐𝑦𝑐𝑙𝑒𝑠 
𝑊𝑎𝑠𝑡𝑒𝑑	𝑇𝑖𝑚𝑒 = (4 × 100 × 10!) ×

1
2 × 10! = 200	𝑆𝑒𝑐 

 
Total time for dgemm0: 
 
We have 2 floating-point instruction and the computer can complete 4 double floating-
point instruction per cycle. Therefore: 
 

𝑇𝑜𝑡𝑎𝑙	𝑇𝑖𝑚𝑒 = 200 + F
2
4G × 10

! ×
1

2 × 10! = 	200.25	𝑆𝑒𝑐 
 
 
Wasted time for dgemm1: 
 
We have load in the innermost loop from 𝑎[𝑖 × 𝑛 + 𝑘] and 𝑏[𝑘 × 𝑛 + 𝑗] and also 1 load 
and 1 store in the second innermost loop. Therefore, the number of the cycles will be 
(2 × 100 × 10#) + (2 × 100)] × 10$ and the wasted time will be: 
 
𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑡ℎ𝑒	𝑐𝑦𝑐𝑙𝑒𝑠 = [(2 × 100 × 10#) + (2 × 100)] × 10$ = 2.002 × 10""	𝑐𝑦𝑐𝑙𝑒𝑠 

𝑊𝑎𝑠𝑡𝑒𝑑	𝑇𝑖𝑚𝑒 = [(2 × 100 × 10#) + (2 × 100)] × 10$ ×
1

2 × 10! = 100.1	𝑆𝑒𝑐 
 
Total time for dgemm1: 
 
We have load in the innermost loop from 𝑎[𝑖 × 𝑛 + 𝑘] and 𝑏[𝑘 × 𝑛 + 𝑗] and also 1 load 
and 1 store in the second innermost loop. Also, there will be 2 cycles in the last two 
innermost loops for arithmetic operation. Therefore: 
 

𝑇𝑜𝑡𝑎𝑙	𝑇𝑖𝑚𝑒 = 100.1 + F
2
4G × 10

! ×
1

2 × 10! = 100.35	𝑆𝑒𝑐 
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I implemented the two algorithms in the frame work and check the correctness of two 
algorithm. I have shown the results of the implementation in the below tables. For 
calculating the giga floating-point operation per seconds, we have 2 floating-point 
operation in the innermost loop and we should multiply it in the iteration count and 
then we should divide it by the time and finally divide it by the 1000000000. 
Therefore, the performance for the dgemm0 and dgmm1 will calculate through this 
equation. 
 

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = 	
2 × 𝑛#

𝑡 ×
1

1000000000 
 
We can clearly see from the tables that dgemm2 has a better performance compare 
to the dgemm0 because of the register reuse technique. x 
 

Table 1: Performance and execution time for dgemm0 

N Execution Time (Seconds) Performance (GFLOPS) 
66 0.00179 0.321224581 
126 0.01230 0.325264390 
258 0.10685 0.317713055 
510 1.20540 0.2200945744 
1026 8.90081 0.242684784 
2046 81.69465 0.209678194 

 

Table 2: Performance and execution time for dgemm1 

N Execution Time (Seconds) Performance (GFLOPS) 
66 0.00085 0.6764611765 
126 0.00363 1.1021355372 
258 0.03521 0.9754905993 
510 0.49131 0.539989009 
1026 3.97940 0.5428183023 
2046 38.18139 0.448637063 

 

Part 2. 

In the table 3, we can see the result of the implementation dgemm2. As we can see, with 12 
registers (4 registers for A, 4 registers for B, and 4 registers for C) we have a better performance 
compared to the previous versions.  
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Table 3: Performance and execution time for dgemm2 

N Execution Time (Seconds) Performance (GFLOPS) 
66 0.00023 2.4999652174 
126 0.00195 2.0516676923 
258 0.01930 1.7796385492 
510 0.22108 1.2000271395 
1026 2.41264 0.8953226142 
2046 30.21038 0.5686743822 

 
Part 3. 

In the table 4, we can see the result of the implementation dgemm2. As we can see, with 16 
registers we have a better performance compared to the previous versions.  

 

Table 4: Performance and execution time for dgemm3 

N Execution Time (Seconds) Performance (GFLOPS) 
66 0.00027 2.1296 
126 0.00141 2.837412766 
258 0.01210 2.8385970248 
510 0.10674 2.4854974705 
1026 1.02954 2.098112897 
2046 7.20772 2.3765610584 

 
In the figure1, we can see the execution time of 4 difference scenario. As it shown in 
the figure, dgemmo have the biggest average execution time and the dgemm3 has the 
smallest average execution time.  
 

 
Figure 1: Executing time for 4 different scenarios 
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Part 1.  
 

A- Matrix 10X10: 
 
1- For ijk & jik: The cache line size is 10. We will have one cache miss for 𝑎"" at first 
and 10 cache misses for 𝑏%" which 𝑖 will starts from 1 to 10. When we go to the second 
row, we have another cache miss for 𝑎&", so we have 1 miss per row for every 
𝑎%"element. In overall there will be 10 misses for 𝑎%"and 10 misses for 𝑏%". Therefore, 
the miss rate will be: 
 

𝑀𝑖𝑠𝑠	𝑅𝑎𝑡𝑒 =
10 + 10
2 × 10# = 0.01 = 1% 

 
2- For jki & kji: we will have 10 cache misses for 𝑏%" and 10 cache misses for 𝑐%" in the 
innermost loop. Therefore, the miss rate will be: 
 

𝑀𝑖𝑠𝑠	𝑅𝑎𝑡𝑒 =
10 + 10
2 × 10# = 0.01 = 1% 

 
3- For kij & ikj: we will have 10 cache misses for 𝑎%" and 10 cache misses for 𝑐%". 
Therefore, the miss rate will be: 
 

𝑀𝑖𝑠𝑠	𝑅𝑎𝑡𝑒 =
10 + 10
2 × 10# = 0.01 = 1% 

 
A- Matrix 10000X10000: 
 
1- For ijk & jik: The cache size is 60 and the size of the matrix is 10000X10000, so we 
have miss in read of the all elements of matrix B which is 10"&. We have miss for 
matrix A in every 10 columns of A in 𝑎%("()*") and there will be 10"" misses for A. 
Therefore:  
 

𝑀𝑖𝑠𝑠	𝑅𝑎𝑡𝑒 =
10"& + 10""

2 × 10"& = 0.55 = 55% 
 
2- For jki & kji: B and C have cache misses in the element of 𝑏%("()*") and 𝑐%("()*") 
respectively. We will read every element n times; therefore, we will have 10"" cache 
misses for both B and C. Thus: 
 

𝑀𝑖𝑠𝑠	𝑅𝑎𝑡𝑒 =
10"" + 10""

2 × 10"& = 0.1 = 10% 
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3- For kij & ikj: The cache size is much smaller than the n, so every cache reference 
will be faced with miss. Therefore, the miss rate will be: 
 

𝑀𝑖𝑠𝑠	𝑅𝑎𝑡𝑒 =
10"& + 10"&

2 × 10"& = 1 = 100% 
 
 

Table 5: Comparing the miss rate for the algorithms for 10X10 and 10000X10000 

Algorithms % of Miss Rate for 10 % of Miss Rate for 10000 
ijk 1% 55% 
jik 1% 55% 
kij 1% 10% 
ikj 1% 10% 
jki 1% 100% 
kji 1% 100% 

 
Part 2.  
 
1- For ijk & jik: Number of misses per element for 𝑎%("()*") which 𝑖 is from 1 to 10000 
is 10 and for 𝑏%("()*") which 𝑖 is from 1 to 10000 is 10. The 10000 × 10000 matrix is 
consisting of the 10 × 10 blocks because the size of our block is 10. Thus, we have 1000 
blocks for our matrix. The total number of reads will be 2 × 10"& and the number of 
the misses for each block is 20 for each algorithm. The total number of misses per 
element is 20000 and the number of misses is 2 × 10"(. Therefore, the miss rate will 
be:  
 

𝑀𝑖𝑠𝑠	𝑅𝑎𝑡𝑒 =
2 × 10"(

2 × 10"& = 0.01 = 1% 
 
 
2- For jki & kji: Number of misses per element for 𝑏%("()*") which 𝑖 is from 1 to 10000 
is 10 and for 𝑐%("()*") which 𝑖 is from 1 to 10000 is 10. The 10000 × 10000 matrix is 
consisting of the 10 × 10 blocks because the size of our block is 10. Thus, we have 1000 
blocks for our matrix. The total number of reads will be 2 × 10"& and the number of 
the misses for each block is 20 for each algorithm. The total number of misses per 
element is 20000 and the number of misses is 2 × 10"(. Therefore, the miss rate will 
be:  
 

𝑀𝑖𝑠𝑠	𝑅𝑎𝑡𝑒 =
2 × 10"(

2 × 10"& = 0.01 = 1% 
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3- For kij & ikj: Number of misses per element for 𝑎%("()*") which 𝑖 is from 1 to 10000 
is 10 and for 𝑐%("()*") which 𝑖 is from 1 to 10000 is 10. The 10000 × 10000 matrix is 
consisting of the 10 × 10 blocks because the size of our block is 10. Thus, we have 1000 
blocks for our matrix. The total number of reads will be 2 × 10"& and the number of 
the misses for each block is 20 for each algorithm. The total number of misses per 
element is 20000 and the number of misses is 2 × 10"(. Therefore, the miss rate will 
be:  
 

𝑀𝑖𝑠𝑠	𝑅𝑎𝑡𝑒 =
2 × 10"(

2 × 10"& = 0.01 = 1% 
 

Table 6: Number of misses and the percent of misses for blocking technique 

Algorithms Number of Misses % of Miss Rate  
ijk 2 × 10"( 1% 
jik 2 × 10"( 1% 
kij 2 × 10"( 1% 
ikj 2 × 10"( 1% 
jki 2 × 10"( 1% 
kji 2 × 10"( 1% 

 
Part 3. 
 
In the below table we can see the execution time for different algorithms. As we can 
see in the table, with the blocking techniques we can get a better performance 
compared to the previous algorithm. The block size is 10 and the matrix size is 2000. 
 

Table 7: Execution time for different algorithms 

Algorithms Execution Times (Seconds) 
ijk 21.76009 
jik 18.43270 
kij 15.50405 
ikj 15.59776 
jki 48.59914 
kji 50.99701 

Blocking ijk 15.36631 
Blocking jik 15.63186 
Blocking kij 15.65540 
Blocking ikj 16.77092 
Blocking jki 15.22280 
Blocking kji 14.72226 

 



8 
 

In the below table, we can see the results of the different blocking size of the 6 
algorithms with the matrix size of 2048. As we can see in the below table, in overall, 
the best performance is for block size 64. 
 

Table 8: Execution time for different block size for N = 2048 

Algorithm BS = 8 BS = 16 BS = 32 BS = 64 BS = 128 BS = 256 
Bijk 28.03076 40.80488 49.05894 31.45562 28.03076 136.23169 
Bjik 29.69498 44.84190 57.59646 33.70540 29.69498 141.20657 
Bkij 15.49741 22.28900 27.94057 19.51716 15.49741 21.65463 
Bikj 16.08998 26.56210 30.19341 20.93875 16.08998 24.33307 
Bjki 245.10074 207.25071 188.73841 246.66377 245.10074 415.10629 
Bkji 244.75277 220.18554 193.42411 236.24918 244.75277 429.00440 

  
Part 4. 
 
In the below table we can see the results for combining the both blocking cache reuse 
and register reuse for different optimization flag. We set the block size to 64 with 
register block 2 and n = 2048. The best performance is for O1. 
 

Table 9: Results for 4 different optimization flags 

-O0 -O1 -O2 -O3 
5.15981 5.14425 5.14943 5.14572 

 


