
1

University of California, Riverside

Department of Computer Science & Engineering

Title: High-Performance Computing – Project 3

Student Name:

Mahbod Afarin

Student ID:

862186340

Fall 2020

2

For this assignment we are going to find the prime numbers in range 1 to 1010 using

sieve of Eratosthenes. The original program is sieve0.c, in sieve1.c, sieve2.c, and

sieve3.c we are trying to do some modifications and then analyze the results. The

sieve1.c does not consider the even integers. The sieve2.c don’t use broadcasting to

find sieving prime and every process will use its sieving prime using local

computation. The sieving sieve3.c will reduce the cache miss using modifying the

loops. In the table 1, we can see the run time of sieve0.c, sieve1.c, sieve2.c, and

sieve3.c for 32, 64, 128, and 256 cores.

 For the first modification, we do not consider even numbers because even numbers

are not prime. Therefore, if we do not set aside memory space for even number, we

can gain higher performance. For the second modification, we eliminate the

broadcasting by local computation and each process can compute their own next

sieving number. Because the broadcast operation takes a lot of time and in this way,

we can have a better performance. For the third modification, we can change the

order of the nested loops. In this way, the outer loop iterates more than the inner loop

and the programs becomes cache friendly because the loop which iterate more, is now

in the outer. In this way we can save a significant time compared to the previous

version.

Table 1: The execution time for different algorithms and different cores

Algorithm 32 cores 64 cores 128 cores 256 cores

Sieve0 27.895410 26.271435 7.093644 6.482263

Sieve1 13.880482 12.927551 3.561341 3.155362

Sieve2 13.607893 12.983536 3.459118 3.121277

Sieve3 6.377443 3.326938 1.604294 0.797720

 As we can see in the table 1, seive3 has the best performance compare to the other

algorithms and it is because of the improving the cache hit rate and minimizing the

broadcast for seive3. Seive0 has the worst performance because it does not have any

kinds of optimization. Also, as it is clear from the table, increasing the number of

cores will decrease the execution time spectacularly and it means that the algorithms

can run in parallel in different cores and we can parallelize them, but the execution

time is not reduced by half with when we double the number of the cores. From 32

cores to 64 cores and 128 cores to 256 cores, it will reduce the execution time by less

than double, but for 64 to 128, it will reduce the execution time by more than double

and the reason is that for 128 cores the program can be parallelize better and it

depends on the algorithm, inputs, and the parallelization overhead. In addition, each

optimization will decrease the execution time spectacularly. In figure 1, we have

3

shown the visual view of the results. The total number of prime numbers is

455052511.

 In the figure 1, we can see the algorithms and their execution time in one chart.

As we can see in the figure 1, the execution time of seive0 is biggest and the execution

time of sieve3 is smallest. The blue bar is for 32 cores, the orange bar is for 64 cores,

the gray bar is for 128 cores, and the yellow bar is for 256 cores. As the number of

cores increases, the execution time will decrease.

Figure 1: Comparison of execution time between different algorithms

In figure 2, we can see the result of the execution in terminal.

Figure 2: Final results which shows the execution time and number of nodes

0

5

10

15

20

25

30

Sieve0 Sieve1 Sieve2 Sieve3

32 cores 64 cores 128 cores 256 cores

