
CS 211: High Performance Computing Project 1

Performance Optimization via Register and Cache Reuse

Due date: Oct. 18th 11:59 pm

Submission Requirements and Instructions

Your Submission to iLearn of this project should be a tar file contain 2 files: a C code

file called mygemm.c, and a PDF report including all results asked to provide in the

following problems with necessary analysis, tables and charts.

About the mygemm.c file: it is a part of the test framework for this project, which

originally contain several blank Matrix multiplication functions which need to be

implemented. In the coding part, you only need to complete the Matrix multiplication

functions in the mygemm.c file, and all of your codes to be submitted should be written

in this file, meanwhile you can test the correctness and efficiency of your codes with

the whole framework. Refer to the posted manual file in the framework for more

information of the usage of this framework. For the convenience of your code test, you

can change the other code files in the framework, but when evaluating your codes, all

the code files in the framework will be the original versions expect the mygemm.c that

you provide.

About running your codes: The evaluation of your codes and the test framework are

both based on the Tardis machine, so it is highly recommended that you always run

your codes on Tardis. The manual file of the framework contains necessary information

of how to run it. Moreover, there is another attached file tardis-tutorial.pdf, which

provides additional information and instructions for running codes on Tardis. If you

only use the test framework (which should be enough for this project), you will not

need to deal with the scripts, just following the manual file of the test framework is OK.

About the corner cases: when the matrix size is not a multiply of the block size, you

need to deal with some corner cases, which is not mandatory in this project. To avoid

them, some matrix sizes in the test framework have been slightly modified. Just remind

that you do not need to deal with the corner cases. However, you can emphasize it in

your report if you succeed in dealing with them.

Problems

1. Register Reuse (50 points).

Part 1. (20 points) Assume your computer can complete 4 double floating-point

operations per cycle when operands are in registers and it takes an additional delay of

100 cycles to read/write one operand from/to memory. The clock frequency of your

computer is 2 Ghz. How long it will take for your computer to finish the following

algorithm dgemm0 and dgemm1 respectively for n= 1000? How much time is wasted

on reading/writingoperands from/to memory? Implement the algorithm dgemm0 and

dgemm1 and test them on TARDIS with n= 64, 128, 256, 512, 1024, 2048 in the

framework provided. Check the correctness of your implementation with the

framework, and report the time spend in the triple loop for each algorithm which is

output by the framework. Calculate the performance (in Gflops) of each algorithm.

Performance is often defined as the number of floating-point operations performed per

second. A performance of 1 Gflops means 1 billion of floating-point operations per

second.

/*dgemm0: simple ijk version triple loop algorithm*/

for (i=0; i<n; i++)

for (j=0; j<n; j++)

for (k=0; k<n; k++)

c[i*n+j] += a[i*n+k] * b[k*n+j];

/*dgemm1: simple ijk version triple loop algorithm with register reuse*/

for (i=0; i<n; i++)

for (j=0; j<n; j++) {

register double r = c[i*n+j] ;

for (k=0; k<n; k++)

r += a[i*n+k] * b[k*n+j];

c[i*n+j] = r;

}

Part 2. (20 points) Let’s use dgemm2 to denote the algorithm in the following ppt slide

from our class. Implement dgemm2 and test it on TARDIS with n= 64, 128, 256, 512,

1024, 2048. Report the time spend in the algorithm. Calculate the performance (in

Gflops) of the algorithm.

Part #3 (10 points). Assume you have 16 registers to use, please maximize the

register reuse in your code (call this version code dgemm3) and compare your

performance with dgemm0, dgemm1, and dgemm2.

2. Cache Reuse (50 points).

Suppose your data cache has 60 lines and each line can hold 10 doubles. You are

performing a matrix-matrix multiplication (C=C+A*B) with square matrices of size

10000X10000 and 10X10 respectively. Assume data caches are only used to cache

matrix elements which are doubles. The cache replacement rule is least recently used

first. One-dimensional arrays are used to represent matrices with the row major order.

/* ijk – simple triple loop algorithm with simple single register reuse*/

for (i=0; i<n; i++)

for (j=0; j<n; j++) {

register double r=c[i*n+j];

for (k=0; k<n; k++)

r += a[i*n+k] * b[k*n+j];

c[i*n+j]=r;

}

/* ijk – blocked version algorithm*/

for (i = 0; i < n; i+=B)

for (j = 0; j < n; j+=B)

for (k = 0; k < n; k+=B)

/* B x B mini matrix multiplications */

for (i1 = i; i1 < i+B; i1++)

for (j1 = j; j1 < j+B; j1++) {

register double r=c[i1*n+j1];

for (k1 = k; k1 < k+B; k1++)

r += a[i1*n + k1]*b[k1*n + j1];

c[i1*n+j1]=r;

}

Part 1. (15 points) When matrix-matrix multiplication is performed using the simple

triple-loop algorithm with single register reuse, there are 6 versions of the algorithm

(ijk, ikj, jik, jki, kij, kji). Calculate the number of read cache misses for each element

in each matrix for each version of the algorithm when the sizes of the matrices are

10000X10000 and 10X10 respectively. What is the percentage of read cache miss for

each algorithm?

Part 2. (15 points) If matrices are partitioned into block matrices with each block

being a 10 by 10 matrix, then the matrix-matrix multiplication can be performed using

one of the 6 blocked version algorithms (ijk, ikj, jik, jki, kij, kji). Assume the

multiplication of two blocks in the inner three loops uses the same loop order as the

three outer loops in the blocked version algorithms. Calculate the number of read

cache misses for each element in each matrix for each version of the blocked

algorithm when the size of the matrices is 10000. What is the percentage of read

cache miss for each algorithm?

Part 3. (10 points) Implement the algorithms in part (1) and (2). Report your

execution time on TARDIS cluster. Adjust the block size from 10 to other numbers to

see what is the optimal block size. Compare and analyze the performance of your

codes for n=2048. Please always verify the correctness of your code.

Part 4. (10 points) Improve your implementation by using both cache blocking and

register blocking at the same time. Optimize your block sizes. Compile your code

using both the default compiler and gcc-4.7.2 with different optimization flags (-O0, -

O1, -02, and -O3.) respectively. Compare and analyze the performance of your codes

for n=2048. Highlight the best performance you achieved. Please always verify the

correctness of your code.

3. Optional Bonus Question

1. Implement Strassen’s algorithm and compare with your previous implementation.

2. Implement any other techniques you are curious about.

