
Mahbod Afarin 862186340 – GPU Lab 3:

1- The execution time for 256	 × 256 matrix multiplication is 0.00083 seconds, and the
execution time for multiplication of 1024 × 64 and 64 × 1024 is 0.000187 seconds. We
observed the execution time for 256	 × 256 is bigger than the execution time of
1024 × 64 and 64 × 1024 matrix multiplication. 256	 × 256 is faster because the
output of the 256	 × 256 matrix multiplication will be 256	 × 256 matrix, but the
output of the 1024 × 64 and 64 × 1024 matrix multiplication is 1024 × 1024 matrix
and for the 256	 × 256 we need 65536 elements and for 1024 × 1024 output we need
1048576 elements. It means that for 256	 × 256 output we need lower threads
compared to the 1024 × 1024 output. That is why 256	 × 256 matrix multiplication is
faster than the 1024 × 64 and 64 × 1024 matrix multiplication.

2- For the titled matrix multiplication it read each element 64 16⁄ = 𝟒 time. Because
we have 16 × 16 tiles and we load from the global memory tile by tile.

3- For the non-tile matrix multiplication it read each element 64 times. Because for
calculating each output elements we need to load n (entire row) elements from one
matrix and n (entire column) elements from the other matrix. Therefore, we load each
element n times.

4- The below table shows the results of the GPGPU-Sim simulator.

Tile Size 8 16 32 Note
gpu_tot_sim_cycle 40398 26881 57956 Total cycles

gpu_tot_ipc 413.6759 446.1548 385.5990 Instruction per cycle
gpgpu_n_load_insn 524288 262144 131072 Total loads to global memory
gpgpu_n_store_insn 16384 16384 16384 Total stores to global memory

gpgpu_n_shmem_insn 4718592 4456448 4325376 Total accesses to shared memory

5- 32 tile size is resulted in least number of accesses to global memory (131072). 8 tile
size is resulted in the most number of accesses to global memory (524288). The reason
is that with 32 tile size, we load each element 128/32 = 4 while with 8 we have 128/8
= 16 loads. Therefore, 4 loads take less time compared to the 16 loads.

6- 16 tile size performs the fastest (26881). 32 tile size performs the slowest (57956).
The reason is that for 32 tile size we have (32 × 32) 32 = 32⁄ warps for each SM, but
for 16 tile size we have (16 × 16) 32 = 8⁄ warps for each SM. There is a tradeoff
between memory access time and distribution of warps between SMs. For the 32 tile
size we have 32 warps for each SM and the access time to memory is better, but the
distribution of warps between SMs and parallelism is not good. For the 8 tile size the
memory access time is not good, but the distribution of the warps between SMs is the
best. For the 16 tile size we will reach the tradeoff and the total cycles is the smallest.

