Project 3: Common Subexpression Elimination
Points: 15 out of 30 (total of the projects)
Due Date: Dec. 4
Objectives:

review the ideas of available express and CSE
learn how to implement a basic transform pass

Tasks:
e Step-1: Read the LLVM documents for more references about the APIs.

e Step-2: Implement the basic available expression analysis and common subexpression
elimination, with the following specifications:

e given a C program, your implementation should be able to find all available expressions
for each function and remove the redundant expressions.

e your implementation does NOT need to remove the redundant memory copies
(load/store), but only need to remove the redundant computations;

e your implementation only needs to handle a basic scenario, where

o all the variables are local variables;

o all the variables and constants are 32 bits signed integers

e the operators in assignments only include +, -, *, / (Signed DIV only)
¢ the IR may include comparing and branching instructions, like icmp and br

¢ the IR may include Load/Store instructions

e Step-3: Test your implementation to make sure it works correctly. Test cases will be provided by
the TA.

Delivery:

e A source code package of the implementation (like the one in subfolder pass/CSElimination)
¢ Name format: CS201-20Fall-Project3-YourStudentNo.zip

Grading Criteria:

e The correctness of the implementation (TA may test your implementation with more test cases);
e The number of redundant computations eliminated.

Input: A C test program created by clang using *.Il format (e.g. test/phase3/1.ll and 2.1l). Here we show
the original source code:
void test () {
int a, b, ¢, d, e, f;
c = £f;
if (e > 0) {
b=a-e¢e;
e = b + c;
} else {
e =Db + c;

}
a=>b + c; <= redundant computation


https://www.google.com/url?q=https://github.com/sunxfancy/CS201-Template/blob/main/test/phase3/1.ll&sa=D&ust=1603750948573000&usg=AOvVaw21vMAt4njTYQ9ixaVvLQY2
https://www.google.com/url?q=https://github.com/sunxfancy/CS201-Template/blob/main/test/phase3/2.ll&sa=D&ust=1603750948574000&usg=AOvVaw2acpYkITqOcVpoRqz545mZ

}

Output: The newly transformed program printed in the standard output stream to eliminate redundancy
of expression calculations. In the attached table, it shows another variable %tmp has been created and
used to store common variables. In the end, %tmp is used to eliminate the original computation (b+c).

Reference:

e The LLVM Compiler Infrastructure
e Writing an LLVM Pass

INPUT OUTPUT



https://www.google.com/url?q=https://llvm.org/&sa=D&ust=1603750948576000&usg=AOvVaw0jbfhZI3CBauSlxA746cAv
https://www.google.com/url?q=https://llvm.org/docs/WritingAnLLVMPass.html&sa=D&ust=1603750948577000&usg=AOvVaw0Mih0vfTUQfVALDfvzWVrW

entry:

dso local

dso local

stmp,

I4

mp, align 4

al 4

mp, align

align 4
4

4
4
align 4
4







