Sharif University of Technology
Department of Computer Engineering

Advanced VLSI Design Course Project
Physical Design and Layout Flow Using Cadence for
Synthesized Digital Circuits

Mahbod Afarin
December 2015

1- Introduction and Problem Definition

In project 2, we used the Design Compiler (DC) tool to convert high-level code into a netlist,
ultimately producing a gate-level circuit. Essentially, we created a mapping between
the technology cells and the circuit we had. In this project, we want to provide our circuit to
the SOC Encounter software so that it performs Placement & Routing (P&R). The output can
then be sent to a fabrication facility, which can manufacture the IC for us. In this task, we will not
optimize the circuit using Desing Compiler, because optimization may lead to some gates being
removed, and as a result, the final circuit might contain wires that are not connected anywhere.

2- Project Steps
It is important to always open SOC Encounter from the directory of your design.

We navigate to the appropriate path and provide the netlist, which was generated as an output
from DC. Then, we enter the top module name, and we also add the .sdk file, which defines the
timing constraints.

The next file is the .lef file, which contains the physical technology information. This tells the
software things like how many layers the standard cells have, the pitch, and so on.

For the LEF file, we add two files:

¢ Oneis the standard cell LEF file
e The other is the antenna effect file

The antenna effect refers to the issue that arises when routing becomes dense: each wire
behaves like an antenna, and its capacitance can introduce noise into the circuit. To manage this,
we use the antenna library, which contains antenna-related specs for each cell.

Next, under the Advanced tab and the Power section, we define the global VDD and GND for the
circuit. All standard cells must have their VDD and VSS specified. Since VDD and GND come from
outside the chip, we must explicitly define the global power and ground for our design.

Then, as shown in the figure, we go to Specify Floorplan. We activate the option "Die size
by" and assign an area larger than the default. The default area is minimal, so we increase it to
ensure sufficient space.

Basic | Advanced

Design Dimensions
Specify By: @ Size Die/lO/Core Coordinates

Core Size by: 0.9998377¢
0.548141
0.545325
369.74
369.68
@ Die Size by: Width: 405.0
Height: 405.0
Core Margins by: . Core to 10 Boundary
Core to Die Boundary

Core to Left: 30 Core to Top: 30
Core to Right: 30 Core to Bottom: 30
10 Box Calculation Use: Max 10 Height 4 Min IO Height
Floorplan Origin at: & Lower Left Corner Center
Unit: Micron
OK Apply Cancel Help

Next, to connect the core to VSS and VDD, two complete power rings (one for VSS and one for
VDD) are drawn around the core. The existing VDD and VSS pins in the core are then connected
to these rings. This approach helps to reduce power consumption, increase noise immunity,
and optimize routing. Therefore, in the "core to left" and "core to right" sections, we specify a
spacing value to provide room for the power rings. The result is as shown in the figure below.

As shown in the figure above, a spacing has been created between the core and the die. Then,
as shown in the next figure, we go to the "Connect Global Net" section and connect
the power and ground cells to the global VDD and GND.

The tie-high concept means that in digital circuits, when we want to assign a logic high (‘1’) to a
node, we do not connect it directly to VDD. This is because if noise appears on VDD, it can affect
the connected node as well. To prevent this, two special cells called tie-high and tie-low are

used:

o tie-high generates a logic high ('1') that is resistant to noise
o tie-low generates a logic low ('0') that is also noise-resistant

Connection List

vdd:PIN:" vdd:All
vdd: TIEHL* vdd:all
vdd:NET:vdd:All
vss:PIN:* vss:all
vss:TIELO: vss:All

vss:NET:vss:All

Apply

|-

EE

<[>

Global Net Connections
Powser Ground Connection
— Connect
~ Pin
~ Tie High
~ Tie Low

Ix

|vss

4 Net Basename: |vss

— Scope

v |
~ Under Module: |

~~ Under Power Domain: |

. Under Region:
& Apply All

|0.0 |0.0 0.0

To Global Net: |vss
_{ Override prior connection

1 Verbose Output

Add to List
Reset

Update
Close

Help ‘

hen, we go to the path: Power - Power Planning - Add Ring.

Power rings are usually implemented using intermediate metal layers, as they need to reach all
areas of the chip. We make the following changes as shown in the figure below.

>

Basic || Advanced | Via Generation |

Net(s): [vss vad

Ring Type
Core ring(s) contouring
Around core boundary
Exclude selected objects

Block ring(s) around

User defined coordinates

Ring Configuration

Top: Bottom: Left: Right:
Layer. METALT H METALT H METALZ V METALZ V
Width: [0.44 0.44 044 044
Spacing: (046 0.46 046 046 Update
Offset: Center in channel 4 Specify
0.56 0.56 0.56 0.56
Option Set

Use option set:

OK Variables

Add Rings

Along VO boundary

2]

Defaults Cancel Help

Apply

In the figure below, it can be seen that our power rings have been added.

By zooming in, the connections can also be observed.

Next, we need to add strips to the circuit. This means adding another layer of metal, which will
be connected to VDD and GND.

If there is a cell located in the middle of the core and we want to connect it to VDD or GND, it
must connect through these strips. This is illustrated in the figure below.

Navigate to:
Power - Power Planning - Add Strip

igure shown below.

ike the f

ill look |

ial route. The output w

Next, we perform a spec

p

Hel

15

y Too

Verift

Sl ¥

4

ignal (clk), we need to add certain cells to the circuit to prevent clock

+—

=}

o

>

o

[}

<

sy

(0]

+—

<X

o

€

(@]

[S)

(@]

o+

©

()

=

—

(@]

g

—

(]

o

(O] £

o £

© [=

< 0 2

S 4 :

= S @l

= w0 x

Q B=2] 8

" . o

[= Y] © A —

e c 9 3 £ -
— ks 3 _ 3

= 5 < - IR ol &

o— (O] = Sl 2 - S| ol

x e = E SlE2Cx

-_— — £ gl=>332

© — 3] m D0 Z —

] L < g — g

€ v o 3 3 2 &

Eo) S e & < a 5 g

c = c < Zl| ©

© 7} © m = 2

o 3 X Sl S| —

£ - 8 & g ||

- wn fee] = =

3 = o] S 2 s | &

= = 2
e TR W & g
© nnu kh 3 % 5 |
L o4 = 4= =

£ S 8¢ iz EIEE|) &«

= g 25 N 2 §538: | &

) o Cp & & =)= F4 g

e o eo & [s)

+) L o

~ +~ 5

Q. < o0

[T + c v

+~ C [oYs) = b

Y oo c 2 ©

ST o— D 4

x Q o =

o 9 © haill =]

c © o v >

v v o o -

< < Q o 3

+— + “— Q

c 4= G [~

= 0 < m v

After that, the clk, VDD, and VSS signals are connected to the cells.

cadence

I ‘ o wos,_197 -
ORF €0 [ke]u]/] e

We can view the clock signal routing path through this window:

cadence

FF_110/4.re5
FF_433/4_reg

(23873, -10718)

B O] il & 5317 .

Now, we analyze the setup time and hold time for the clk signal. There should be no negative
timing values in the output.

timeDesign Summary

| Setup mode | all | reg2reg | in2reg | reg2out | in2out | clkgate
|

L+

| WNS (ns):| 14.392 | 14.798 | 14.392 | N/A | N/A | N/A
|

| TNS (ns):| 0.000 | 0.000 | 0.000 | N/A | NA | N/A
|

| Violating Paths:| 0 | O | 0 | NA | NA | NA
|

| All Paths:| 534 | 512 | 422 | N/A | NA | NA
|

-

| | Real | Total |

| DRVs |

| |Nr nets(terms)| Worst Vio |Nr nets(terms)|

| max_cap | 2@ | -0.043 | 2(2) |

| max_tran | 0(0) | 0.000 | 0(0) |

| max_fanout | 0 (0) | 0 | 0 (0) |

Density: 63.303%
Routing Overflow: 0.00% H and 1.21% V

Reported timing to dir timingReports
Total CPU time: 1.39 sec

Total Real time: 2.0 sec

Total Memory Usage: 203.742188 Mbytes
encounter 1> [

BT ¢ 0]

]] @[]

As shown in the image above, there are no negative values for the setup time. Now, let's examine
the hold time:

SoC|
SI Verify Tools Help

FBEX 2|

Basic || Advanced

_{ Use Existing Extraction and Timing Data

Design Stage
~ Pre-Place ., Pre-CTS 4 Post-CTS ., Post-Route , Sign-Off

Analysis Type
~ Setup
7

4 Hold

Reporting Options

Number of Paths:
Report file(s) Prefix:
Output Directory

50
$15850_postCTS
timingReports

OK Apply Cancel Help

In the output, we will see that negative values are present, which means the hold time is violated.

timeDesign Summary

Hold mode	all	reg2reg	in2reg	reg2out	in2out	clkgate
WNS (ns):	-0.817	0.224	-0.817	N/A	N/A	N/A
TNS (ns):	-118.806	0.000	-118.806	N/A	N/A	N/A
Violating Paths:	207	0	207	N/A	N/A	N/A
All Paths:	534	512	422	N/A	N/A	N/A

Density: 63.303%
Routing Overflow: 0.00% H and 1.21% V

Reported timing to dir timingReports
Total CPU time: 1.36 sec

Total Real time: 1.0 sec

Total Memory Usage: 293.742188 Mbytes

EEEe ol S 7=

In this case, we need to use optimization techniques to try to improve the hold time.

@ Wed jan 27, 102

SoC Ei
Optimization
Design Stage o &
J R
+ PreCTS # Post-CTS + Post-Route & B> &
Optimization Type-
_i Setup o Hold

 Incremental

@ Design Rules Violations
W Max Cap
 Max Tran
_i Max Fanout

Mode Default Close

|+ | & icic@ICICVM:~/De][) SoC Encountes(TW|[] Timing Analysis _|[) Optimization

We repeat this process until the hold time becomes positive.

After that, we proceed with routing the remaining signals in the circuit until we reach the layout
shown below.

L
OhE € O]

el 2T o]

A closer view of the routing layout is shown below:

= .
Gl € 'O

[l @] E

In the next step, we move on to verifying geometry and connectivity, with the positive results of
each step shown below.

Geometry:

FF® veriry geometry (LrU: U:UU:UL.3 MEM: Z5.3M)

encounter 1> *** Starting Verify Geometry (MEM: 367.1) *#**

VERIFY GEOMETRY Starting Verification
VERIFY GEOMETRY . Initializing
VERIFY GEOMETRY Deleting Existing Violations
VERIFY GEOMETRY Creating Sub-Areas
. bin size: 8320
VERTFY GEOMETRY SubArea : 1 of 1
VERIFY GEOMETRY Cells : 0 Viols.
VERIFY GEOMETRY . SameNet 0 Viols.
VERTFY GEOMETRY . Wiring 0 Viols.
VERIFY GEOMETRY . Antenna : 0 Viols.
VERIFY GEOMETRY Sub-Area : 1 complete 0 Viols. O Wrngs.
VG: elapsed time:
Begin Summary ...
Cells 0
SameNet 0
Wiring 0
Antenna : 0
Short : 0
Overlap 0
End Summary
Verification Complete : 0 Viols. O Wrngs.

wxswxrsx*End: VERIFY GEOMETRY®*%#% %% #s %%
#%% yerify geometry (CPU: 0:00:00.0 MEM: 0.0M)

>

encounter 1> l

E €O

l
|

|| @ [m)]

=

Connectivity:

End: VERIFY GEOMETRY
#*% yerify geometry (CPU: 0:00:01.3 MEM: 25.3M)

encounter 1> *** Starting Verify Geometry (MEM: 367.1) ***

VERIFY GEOMETRY Starting Verification
VERIFY GEOMETRY . . Initializing
VERIFY GEOMETRY . . Deleting Existing Violations
VERIFY GEOMETRY . . Creating Sub-Areas

. . bin size: 8320
VERTFY GEOMETRY . . SubArea : 1 of 1
VERIFY GEOMETRY . . Cells 0 Viols.
VERTFY GEOMETRY . . SameNet 0 Viols.
VERIFY GEOMETRY . . Wiring 0 Viols.
VERIFY GEOMETRY . . Antenna 0 Viols.
VERIFY GEOMETRY Sub-Area : 1 complete 0 Viols. 0 Wrngs.

VG: elapsed time:
Begin Summary ...
Cells :
SameNet
Wiring
Antenna

Short
Overlap
End Summary

cocococoo

Verification Complete : 0 Viols. O Wrngs.

End: VERIFY GEOMETRY
#% yerify geometry (CPU: 0:00:00.0 MEM: 0.0M)

encounter 1>
Frwwssss Start: VERIFY CONNECTIVITY *###*x#*
Start Time: Wed Jan 27 10:44:12 2016

Design Name: s15850
Database Units: 2000

After this step, we proceed to Add Filler, which fills the gaps between cells to make the
layout manufacturable by the fabrication plant. After performing this step, the gaps between
cells are filled as shown below:

Help
encounter 1> *+* rify Geonetry (MEM: 341.9) ***

VERTFY GEOMETRY
VERLFY GEOMETRY ..

VERTFY GEOMETRY

ectToGlobalNet or GUI FloorPlan->Cl

Y GEOMETRY . : 0 Viols.
“UARN: (SOCVEG-47): P DFF_316/g_reg at (31.820, 50.000), (32.820, 50.800) on Layer Ml is not connected to any net. U
s obal Net Connections to specify global net comnection ru

Now, we can perform the metal fill step: In this step, all metal layers are selected,

and the empty spaces are filled with the corresponding metal. We then arrive at
the layout shown below:

And then we save the design. Note: After several steps, the saved files are available and have

been attached. Once the layout is finalized, it must undergo timing analysis to verify the
correctness of the placement.

In the next step, we remove the antenna effect using the ANTENNATF diode cell, and then we

re-check thetiming analysis. We observe that there areno negative values for
either hold or setup time.

timeDesign Summary

Setup mode | all | reg2reg | in2reg | reg2out | in2out | clkgate
WNS (ns):| 13.831 | 14.479 | 13.831 | N/A | N/A | N/A |
TNS (ns):| 0.000 | 0.000 | 0.000 | N/A | N/A | N/A |
Violating Paths:| 0 | 0 | 0 | N/A | N/A | N/A |
All Paths:| 53¢ | 512 | 422 | Na | Na | w4 | I
| Real | Total |
DRVs + + + |
|

|Nr nets(terms)| Worst Vio |Nr nets(terms)

max_cap | 2 (2) | -0.083 | 2 (2) |
max_tran | 2 (122) | -0.255 | 2 (122)
max_fanout | 0 (0) | 0 | 0 (0) |

sity: 66.886%

orted timing to dir timingReports
al CPU time: 1.24 sec

al Real time: 1.0 sec

al Memory Usage: 307.417969 Mbytes
ounter 1>

3l C[O]

SICN AN]

Of course, to make even theworst violation (worst vio)positive, we could
perform optimization multiple times—but this step was skipped.

Another important output of the placement design is the RC Extraction, which generates
a .spef file. This file contains the parasitic characteristics of the circuit.
We extracted this file from the menu: Timing - Extract RC, and it has been attached. Other files
such as the GDS file and the netlist were also extracted and attached.

Final Step: We evaluate, through a trial-and-error approach, the smallest possible Die
size suitable for the design. In this stage, various sizes were tested from the beginning, and the
best approximate Die size for this circuit was determined to be around 390x390.

