
 1

University of California, Riverside
Department of Computer Science and Engineering

Title: Lab 1 - OS structure and Scheduler

Course: Advanced Operation Systems

Mahbod Afarin

862186340

Spring 2021

 2

1. Part A: System call and xv6 basic structure

In this part of the project, we have to do some changes in the xv6 in order to count
the number of the process in the system, count the total number of the system calls
that the current process has made so far, as well as the number of memory pages the
current process is using. In the first subsection, I will discuss the details of changing
in code, and in the second subsection. I am going to show the results of the sample
test file.

1-1 Changes in the code

For counting the number of process in the system, count the total number of the
system calls that the current process has made so far, as well as the number of
memory pages the current process is using, we have to do some changes in the
following files to add info system call.

• proc.c
• sysproc.c
• syscall.h
• syscall.c
• user.h
• defs.h
• usys.S

In the future sections, first, I will provide the details about what I added to the
program.

1-1-1 Changes in proc.h

In proc.h, I added NuSysCall to the struct proc to count the number of the system
calls per process. Here we have sz in struct pro which give us the size of the process
memory in bytes, and we can simply calculate the number of the memory pages uses
by each process with dividing this number by page size (sz/PGSIZE).

1-1-2 Changes in sysproc.c

In sysproc.c, I have defined the system call and named it sys_info(). For getting
argument from input, I used argint and it will pass the input argument to variable i.

Listing 1: changes in sysproc.c

1 int
2 sys_info(void)
3 {
4 int i;
5 if (argint(0, &i) < 0)

 3

6 return -1;
7 return info(i);
8 }

1-1-3 Changes in syscall.c

In syscall.c, I added extern int sys_info(void) and [SYS_info] sys_info in syscall.c. I
have defined sys_count(void) as extern integer, because I already declare it in another
file named sysproc.c. Also, I have added ++curproc->NuSysCall; to the system call
function to count the number of the system calls for each process.

1-1-4 Changes in syscall.h

In syscall.h, I have defined the system call and added this line #define SYS_info 22
at the end of the definitions.

1-1-5 Changes in user.h

In user.h, I have added int info(void).

1-1-6 Changes in usys.S

In usys.S, I have added SYSCALL(info).

1-1-7 Changes in proc.c

In proc.c, I have added the following part. It will get the value of I and based on that
value, it will return the number of process, number of systems calls for the current
process, as well as the number of pages for that process. In the other part of the proc.c,
I have initialized the NuSysCall also, I have defined a variable for counting the
number of processes and updated it for each process. Here we have proc->sz gives us
the size of the process memory in bytes, and we can simply calculate the number of
the memory pages uses by each process with dividing this number by page size
(sz/PGSIZE).

Listing 2: The changes in proc.c

1 int
2 info(int i)
3 {
4 struct proc *proc = myproc();
5 if (i == 1)
6 return num_of_Processes;
7 else if (i == 2)
8 return proc->NuSysCall;
9 else if (i == 3)
10 return proc->sz/PGSIZE;
11 else {

 4

12 exit();
13 }
14 return i;
15 }

1-2 Testing the program

For testing the program, I have created a test file called prog0.c. This test file is
already available in the program directory. As it is clear in the listing 1, it will set
three different numbers (1, 2, and 3) for info for two nested loops, and the results
should be the number of the process in the system, the number of the system calls for
current process so far, and the number of the memory pages used by that specific
process.

Listing 3: The test code for testing the first part of the project

1 #include "types.h"
2 #include "stat.h"
3 #include "user.h"
4
5 int main(int argc, char* argv[])
6 {
7 int i, k;
8 const int loop = 100;
9 for(i = 0;i < loop; i++)
10 {
11 asm("nop");
12 for(k=0; k < loop; k++) {
13 asm("nop");
14 }
15 }
16 printf(1, "The number of Processes: %d \n", info(1));
17 printf(1, "The number of sysCalls for process: %d \n", info(2));
18 printf(1, "The number of the memory pages used by process: %d \n", info(3));
19 exit();
20 }

We have to add the prog0.c to the make file, so I did the following changes in the
make file to do that:

Listing 4: Changes in the make file to add prog0.c

1 _prog0\ // in UPROGS
2 \prog0.c\ // in EXTRA=\

Figure 1, show the output screenshot of the prog0. As it is clear from the figure, the
number of the process in system is 3, the number of the system calls for prog0 is 31,
and the number of the memory pages used by prog0 is 3.

 5

Figure 1: the screenshot of the output results of prog0.c

2 Part B: Scheduling

For this part of the project, I have implemented the lottery and stride scheduling
algorithm. In the first part of this section, I will talk about the changes in the code
for supporting lottery and stride scheduling. In the second section, I will talk about
the results of testing the lottery and stride scheduling.

2-1 Changes in code to support lottery and stride scheduling

For supporting lottery and stride scheduling, I have made some changes in the
following files.

• proc.c
• sysproc.c
• syscall.h
• syscall.c
• user.h
• defs.h
• usys.S

1-1-1 Changes in proc.h

In proc.h, I did the following changes in the proc struct to implement lottery and
stride scheduling. I also added int totalNumTickets; to store the total number of
tickets for each process.

Listing 5: Changes in proc.h

1 int myTicket;
2 int numOfTicks;
3 int myStride;
4 int myCount;
5 int stride;

1-1-2 Changes in sysproc.c

In sysproc.c, I have defined the following system calls. The sys_SetTicket system call
will get the number of the tickets from the user.

 6

Listing 6: Changes in sysproc.c

1 int
2 sys_setTicket(void)
3 {
4 int i;
5 argint(0, &i);
6 return setTicket(i);
7 }

1-1-3 Changes in syscall.c

In syscall.c, I added the following changes to support sys_setTicket system call.

Listing 7: Changes in syscall.c

1 extern int sys_setTicket(void);
2
3 [SYS_setTicket] sys_setTicket,

1-1-4 Changes in syscall.h

In syscall.h, I have defined the system call and added this line define SYS_setTicket
23 at the end of the definitions.

1-1-5 Changes in user.h

In user.h, I have added int setTicket(int);

1-1-6 Changes in usys.S

In usys.S, I have added SYSCALL(setTicket).

1-1-7 Changes in proc.c

In proc.c, first of all I defined setTicket in order to set tickets for each process.

Listing 8: The changes in proc.c

1 int setTicket(int i)
2 {
3 totalNumTickets = totalNumTickets - myproc()->myTicket;
4 if(totalNumTickets <0) totalNumTickets = 0;
5 myproc()->myTicket = i;
6 myproc()->numOfTicks = 0;
7 totalNumTickets = totalNumTickets + i;
8 return 0;
9 }

Here is my lottery scheduler implementation:

 7

Listing 9: lottery scheduler

1 void
2 scheduler(void)
3 {
4 struct proc *p;
5 struct cpu *c = mycpu();
6 c->proc = 0;
7
8 //Lab0 second part
9 int lottery;
10 int lotteryVal;
11
12 for(;;){
13 // Enable interrupts on this processor.
14 sti();
15
16 //Lab0 second part
17 lotteryVal = 0;
18 if(totalNumTickets > 0)
19 {
20 lottery = randomGen(totalNumTickets);
21 } else {
22 lottery=0;
23 }
24
25 // Loop over process table looking for process to run.
26 acquire(&ptable.lock);
27 for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){
28 if(p->state != RUNNABLE)
29 continue;
30
31 //Lab0 second part
32 lotteryVal += p->myTicket;
33 if (lotteryVal >= lottery)
34 {
35 p->numOfTicks++;
36
37 // Switch to chosen process. It is the process's job
38 // to release ptable.lock and then reacquire it
39 // before jumping back to us.
40 c->proc = p;
41 switchuvm(p);
42 p->state = RUNNING;
43
44 swtch(&(c->scheduler), p->context);
45 switchkvm();
46
47 // Process is done running for now.
48 // It should have changed its p->state before coming back.
49 c->proc = 0;
50 break;
51 }
52 }
53 release(&ptable.lock);
54 }
55 }

 8

Here is my stride scheduler implementation:

Listing 10: Stride scheduler

1 void
2 scheduler(void)
3 {
4 struct proc *p1 = myproc();
5 float StrideMin;
6 struct proc *p;
7 struct cpu *c = mycpu();
8 c->proc = 0;
9
10 for(;;){
11 // Enable interrupts on this processor.
12 sti();
13 StrideMin = 1000000;
14
15 // Loop over process table looking for process to run.
16 acquire(&ptable.lock);
17 for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){
18 if(p->state != RUNNABLE)
19 continue;
20
21 if (p->stride < StrideMin) {
22 //cprintf("%s \n", p->name);
23 p->numOfTicks++;
24 StrideMin = p->stride;
25 p1 = p;
26 }
27 }
28 p1->myCount++;
29 p1->stride += p1->myStride;
30 //cprintf("Process %s stride: %d\n", p1->name, p1->stride);
31 c->proc = p1;
32 switchuvm(p1);
33 p1->state = RUNNING;
34
35 swtch(&(c->scheduler), p1->context);
36 switchkvm();
37
38 // Process is done running for now.
39 // It should have changed its p->state before coming back.
40 c->proc = 0;
41 release(&ptable.lock);
42 }
55 }

2-2 Testing the lottery and stride scheduling

In order to test the lottery and stride scheduling, I have created three test file named
prog1.c, prog2.c, and prog3.c. In these test files we have two nested loops with
different number of tickets. We can set the number of tickets using the setTicket().

 9

In the following listing, I showed prog1.c with 30 ticket. The prog2.c and prog3.c are
the same as prog1, but with 20 and 10 tickets respectively.

Listing 11: The prog1.c for testing the second phase of the lab

1 #include "types.h"
2 #include "stat.h"
3 #include "user.h"
4
5 int main(int argc, char* argv[])
6 {
7 setTicket(30);
8 int i, k;
9 const int loop = 43000;
10 for(i = 0;i < loop; i++)
11 {
12 asm("nop");
13 for(k=0; k < loop; k++) {
14 asm("nop");
15 }
16 }
17 exit();
18 }

We have to do the following changes in the make file to run these test files. All the
three test files are in the program’s directory. Also, I change the number of the CPUs
from 2 to 1 in the make file.

Listing 12: Changing in the make file to add the three test programs

1 _prog1\ // in UPROGS
2 _prog2\ // in UPROGS
3 _prog3\ // in UPROGS
4 \prog1.c\ // in EXTRA=\
5 \prog2.c\ // in EXTRA=\
6 \prog3.c\ // in EXTRA=\

The below figure shows the result of running prog1, prog2, and prog3 together. I run
all the programs together using the prog1&;prog2&;prog3 command. As it is clear
from the figure, prog1 with 30 tickets has 23002 ticks, prog2 with 20 tickets has 11936
ticks, and prog3 with 10 tickets has 4476 ticks. The ratio for prog1, prog2, and prog3
is 0.58, 0.30, and 0.11. As we expected and it is clear from the figure, since prog1 has
the biggest number of the ticket, it will finish faster, and its ratio is bigger. The prog3
has the lowest number of tickets and it will finish later, and its ratio is lowest.

 10

Figure 2: Results of the running prog1, prog2, and prog3 together

The following figure shows the context switching between the different processes. As
it is clear from the figure, prog1 has 30 tickets so the frequency of prog1 is significant
and prog 3 has 10 tickets and its frequency is lower.

Figure 3: The result of the context switching between prog1, prog2, and prog3

For testing the stride scheduling we have to uncomment the stride scheduling part
from the proc.c. The below figure shows the result of running the stride scheduling
for three programs simultaneously. As it is clear from the figure, the stride scheduling
improves lottery scheduling and it prevent the starvation.

 11

Figure 4: The results of running stride scheduling

Below figure shows the results of the lottery scheduling involving three clients prog1,
prog2, and prog3 with 3:2:1 allocation ratio. As it is clear from the figure, the ideal
allocation for lottery scheduling is a straight line with a constant slop, but we can see
in the figure 5 that the chart is not straight with constant slop and the reason for that
is algorithm inherent use of randomization.

Figure 5: Results of the lottery scheduling involving three clients

Below figure shows the results of the stride scheduling involving three clients prog1,
prog2, and prog3 with 3:2:1 allocation ratio. As it is clear from the figure, using stride
scheduler we have precise periodic behavior. So, the stride scheduler solve the
randomization problem of the lottery scheduler.

0
50
100
150
200
250
300
350
400

1 26 51 76 10
1

12
6

15
1

17
6

20
1

22
6

25
1

27
6

30
1

32
6

35
1

37
6

40
1

42
6

45
1

47
6

50
1

52
6

55
1

57
6

60
1

62
6

65
1

CU
M

U
LA

TI
VE

 Q
U

AN
TA

TIME (QUANTA)

Lottery Scheduler

prog1 prog2 prog3

 12

Figure 6: Results of the stride scheduler for prog1, prog2, and prog3

In figure 7 and 8, I showed the results for lottery and stride scheduler error for client
with 3:2 ratio. The error will increase slowly in lottery scheduler when we increase
the number of allocations. For stride scheduling, the error never exceed a single
quantum and it will follow a deterministic pattern. The error in stride scheduling will
drop to zero at the end of each period.

Figure 7: Throughput accuracy for lottery scheduling for running two clients with 3:2 ratio

0

100

200

300

400

500

600

700

1 37 73 10
9

14
5

18
1

21
7

25
3

28
9

32
5

36
1

39
7

43
3

46
9

50
5

54
1

57
7

61
3

64
9

68
5

72
1

75
7

79
3

82
9

86
5

90
1

93
7

CU
M

U
LA

TI
VE

 Q
U

AN
TA

TIME (QUANTA)

Stride Scheduler

prog1 prog2 prog3

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031

M
EA

N
 E

RR
O

R
(Q

U
AN

TA
)

TIME (QUANTA)

Lottery 3:2

 13

Figure 8: Throughput accuracy for stride scheduling for running two clients with 3:2 ratio

0
2
4
6
8
10
12

1 9 17 25 33 41 49 57 65 73 81 89 97 10
5

11
3

12
1

12
9

13
7

14
5

15
3

16
1

16
9

17
7

18
5

19
3

20
1M
EA

N
 E

RR
O

R
(Q

U
AN

TA
)

TIME (QUANTA)

Lottery 3:2

