
 1

University of California, Riverside
Department of Computer Science and Engineering

Title: Lab 2 – XV6 Threads

Course: Advanced Operation Systems

Mahbod Afarin

862186340

Spring 2021

 2

1. Lab Overview

For the purpose of this lab, I am going to add the real kernel threads to xv6. I will
divide the description of this lab into three parts. First of all, I defined a new system
call in order to create the kernel threads and named it 𝑐𝑙𝑜𝑛𝑒	(). Second, I used 𝑐𝑙𝑜𝑛𝑒	()
system call to create a little thread library. Finally, using a test program, I will show
that all of the things work well.

2. Defining 𝒄𝒍𝒐𝒏𝒆	() System Call

In this part I will talk about the details of defining the new system call called 𝑐𝑙𝑜𝑛𝑒	().
I will use this system call to create thread kernels and it will be similar to fork (), but
there will be some differences between 𝑐𝑙𝑜𝑛𝑒	() and 𝑓𝑜𝑟𝑘	(). The fist difference will be
the address space. The address space of should be shared between the parents and
child, so instead of creating a new address space, it should use the parent’s address
space. The second difference should be the file descriptor. The file descriptor of the
child should be the same file descriptor for parents. Therefore, the parents and child
should not have duplicate file descriptor. Third, in 𝑐𝑙𝑜𝑛𝑒	(), I make sure that when I
am return, I am not running on the parent’s stack. The 𝑐𝑙𝑜𝑛𝑒	() system call will return
PID of the child to parent. In listing 1, you can see the implementation of the 𝑐𝑙𝑜𝑛𝑒	().

Listing 1: Implementation of the 𝑐𝑙𝑜𝑛𝑒	()

1 int clone(void* stack,int size)
2 {
3 int i,pid;
4 struct proc *p;
5 if((p = allocproc()) == 0)
6 {
7 return -1;
8 }
9 struct proc *curproc = myproc();
10 p->sz = curproc->sz;
11 p->parent = curproc;
12 *p->tf = *curproc->tf;
13 p->thread = 1;
14 p->pgdir = curproc->pgdir;
15 p->tf->eax = 0;
16 ThreadNum++;
17 void *var1 = (void*)curproc->tf->ebp +16;
18 void *var2 = (void*)curproc->tf->esp;
19 uint sz1 = (uint)(var1 - var2);
20 p->tf->esp = (uint) (stack - sz1);
21 p->tf->ebp = (uint) (stack - 16);
22 memmove(stack-sz1,var2,sz1);
23 for(i=0;i<NOFILE;i++)
24 {
25 if(curproc->ofile[i])
26 {
27 p->ofile[i]=filedup(curproc->ofile[i]);
28 }

 3

29 }
30 p->cwd = idup(curproc->cwd);
31 pid = p->pid;
32 p->state = RUNNABLE;
33 safestrcpy(p->name, curproc->name, sizeof(curproc->name));
34
35 return pid;
36 }

We should do some changes in 𝑒𝑥𝑖𝑡() and 𝑤𝑎𝑖𝑡() calls. Previously, when we call 𝑒𝑥𝑖𝑡()
system call, it will simply close all the file descriptors which the process use. But now,
the file descriptors and shared between threads of the kernel process and we cannot
close all of that. For solving that problem, I keep track of number of threads that
shared the same address space, and I will free the resources only when the last thread
exit. Also, we can use this trick for 𝑤𝑎𝑖𝑡() system call. In listing 2, I showed the
thread_𝑒𝑥𝑖𝑡() system call.

Listing 2: Implementation of the 𝑡ℎ𝑟𝑒𝑎𝑑_𝑒𝑥𝑖𝑡	()

1 void thread_exit()
2 {
3 if(ThreadNum == 1)
4 {
5 struct proc *curproc = myproc();
6 struct proc *p;
7 int fd;
8
9 if(curproc == initproc)
10 panic("init exiting");
11 for(fd = 0; fd < NOFILE; fd++)
12 {
13 if(curproc->ofile[fd])
14 {
15 fileclose(curproc->ofile[fd]);
16 curproc->ofile[fd] = 0;
17 }
18 }
19
20 begin_op();
21 iput(curproc->cwd);
22 end_op();
23 curproc->cwd = 0;
24
25 acquire(&ptable.lock);
26 wakeup1(curproc->parent);
27 for(p = ptable.proc; p < &ptable.proc[NPROC]; p++)
28 {
29 if(p->parent == curproc)
30 {
31 p->parent = initproc;
32 if(p->state == ZOMBIE)
33 wakeup1(initproc);
34 }
35 }

 4

36 curproc->state = ZOMBIE;
37 sched();
38 panic("zombie exit");
39 } else {
40 ThreadNum--;
41 }
42 }

I also had some little modifications in 𝑑𝑒𝑓. ℎ, 𝑝𝑟𝑜𝑐. ℎ, 𝑀𝑎𝑘𝑒𝑓𝑖𝑙𝑒, 𝑠𝑦𝑠𝑐𝑎𝑙𝑙. 𝑐, 𝑠𝑦𝑠𝑝𝑟𝑜𝑐. 𝑐,
𝑢𝑠𝑒𝑟. ℎ, and 𝑠𝑦𝑠𝑐𝑎𝑙𝑙. ℎ. In the 𝑑𝑒𝑓. ℎ we need to add 𝑖𝑛𝑡	𝑐𝑙𝑜𝑛𝑒(𝑣𝑜𝑖𝑑 ∗, 𝑖𝑛𝑡); and
𝑣𝑜𝑖𝑑	𝑡ℎ𝑟𝑒𝑎𝑑𝑒𝑥𝑖𝑡();. In the 𝑝𝑟𝑜𝑐. ℎ we need to add 𝑖𝑛𝑡	𝑡ℎ𝑟𝑒𝑎𝑑;. In the 𝑀𝑎𝑘𝑒𝑓𝑖𝑙𝑒 we need
add 𝑡ℎ𝑟𝑒𝑎𝑑. 𝑐	and 𝑓𝑟𝑖𝑠𝑏𝑒𝑒. 𝑐. In the 𝑠𝑦𝑠𝑐𝑎𝑙𝑙. 𝑐 we need to add the following:

Listing 3: Changes in the c𝑠𝑦𝑠𝑐𝑎𝑙𝑙. 𝑐

1 extern int sys_clone(void);
2 extern int sys_threadexit(void);
3 [SYS_clone] sys_clone,
4 [SYS_threadexit] sys_threadexit,

We need the following changes in the 𝑠𝑦𝑠𝑝𝑟𝑜𝑐. 𝑐:

Listing 4: Changes in the sysproc. 𝑐

1 int sys_clone(void)
2 {
3 void *st;
4 int sz;
5 if(argint(1, &sz) < 0)
6 return -1;
7 if(argptr(0, (char **)&st, sz) < 0)
8 return -1;
9 return clone(st, sz);
10 }
11 int sys_threadexit(void)
12 {
13 threadexit();
14 return 0;
15 }

3. Building Thread Library

In this part, I am going to describe the process of building a little thread library. The
thread library will be built on top of this. Therefore, I create 𝑡ℎ𝑟𝑒𝑎𝑑_𝑐𝑟𝑒𝑎𝑡() for this
purpose. This routine will use 𝑐𝑙𝑜𝑛𝑒() in order to create the child. Also, my thread
library implements spin lock. I used 𝑙𝑜𝑐𝑘_𝑡 type to declare a lock and there are two
routines named 𝑙𝑜𝑐𝑘_𝑎𝑐𝑞𝑢𝑖𝑟𝑒	(𝑙𝑜𝑐𝑘_𝑡	 ∗) and 𝑙𝑜𝑐𝑘_𝑟𝑒𝑙𝑒𝑎𝑠𝑒(𝑙𝑜𝑐𝑘_𝑡	 ∗) which can quire
and release the lock for us. For initializing the lock, I used 𝑙𝑜𝑐𝑘_𝑖𝑛𝑖𝑡(𝑙𝑜𝑐𝑘_𝑡	 ∗).

Listing 5: Implementation of the 𝑡ℎ𝑟𝑒𝑎𝑑. 𝑐

1 #include "types.h"

 5

2 #include "user.h"
3 #include "mmu.h"
4 #include "spinlock.h"
5 #include "x86.h"
6
7 struct lock_t
8 {
9 uint lock;
10 };
11
12 void thread_create(void*(*sr)(void*), void *arg)
13 {
14 void* np = malloc(PGSIZE*2);
15 int tp;
16 tp = clone(np, PGSIZE*2);
17 if(tp==0)
18 {
19 (*sr)(arg);
20 exit();
21 }
22 }
23
24 void lock_init(struct lock_t *lk)
25 {
26 lk -> lock = 0;
27 }
28 void lock_acquire(struct lock_t *lk)
29 {
30 while(xchg(&lk->lock,1) != 0);
31 }
32 void lock_release(struct lock_t *lock)
33 {
34 xchg(&lock->lock,0);
50 }

4. Testing My Code

For testing my code, I used a simple program to create some number of threads for
me using 𝑡ℎ𝑟𝑒𝑎𝑑_𝑐𝑟𝑒𝑎𝑡𝑒(). The threads are simulating the frisbee game for us where
each thread passes the frisbee to the next thread. Each thread spins will check the
value of the lock in the location of the frisbee and if it is its turn, it will print a message
and then release the lock. In the below listing you can see the implementation of the
frisbee game.

Listing 6: Implementation of the frisbee game

1 #include "types.h"
2 #include "user.h"
3 #include "stat.h"
4 #include "thread.h"
5
6 struct lock_t *lock;
7 int round = 0, j = 0;
8 int ThreadNum, PassNum;

 6

9
10 void* PassThreads(void *k)
11 {
12 int i = (int)k;
13 while(round < PassNum)
14 {
15 lock_acquire(lock);
16 if(round == PassNum) {break;}
17 if(i == j)
18 {
19 round++;

20 printf(1, "Pass number no: %d, Thread %d is passing the token to
thread ", round, i);

21 j++;
22 if(j == ThreadNum)
23 j = 0 ;
24 printf(1," %d\n",j);
25 lock_release(lock);
26 sleep(1);
27 }
28 else
29 {
30 lock_release(lock);
31 sleep(1);
32 }
33 }

34 printf(1,"Simulation of Frisbee game has finished, 6 rounds were played in
total!\n", round);

35 exit();
36 }
37
38 int main(int argc, char *argv[])
39 {
40 int i = 0;
41 ThreadNum = atoi(argv[1]);
42 PassNum = atoi(argv[2]);
43 lock_init(lock);
44 for(i = 0; i<ThreadNum; i++)
45 {
46 thread_create(PassThreads, (void *)i);
47 }
48 wait();
49 exit();
50 }

In figure 4, we can see the results for running the frisbee game with 4 threads and 6
passes. For running the frisbee program we should specify the inputs of the program.
The first input parameter is the number of threads, and the second input parameter
is the number of passes. The parent process will create multiple threads which is our
players in frisbee game. Each thread will access to the lock and check whether it is
its turn or not. If it is its run, it will throw the frisbee and the program will assign

 7

the id of the next thread to receive the frisbee. Then, it will increase the number of
passes and then release the lock.

Figure 1: The result of testing frisbee with 4 threads and 6 passes

Figure 2 shows another example with 5 number of threads and 10 rounds.

Figure 2: Another example with 5 threads and 10 rounds

