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1.1 “hello world” program 

(a) Screenshot from running the hello world program on your computer and 
explanation of output and thread order.  

Figure 1 shows a screenshot from running the hello world program on my computer. 
As it is clear from the figure, since I did not set a specific number of threads, the 
system set the number of threads to 4 by default. 

 
Figure 1: Screenshot of the output for first run 

Then I executed the program four times. Figure 1, figure 2, and figure 3 show 
screenshot of the output for second, third, and fourth execution respectively. As it is 
clear from the figures, the order of the output threads is different in each execution. 
The reason for that is the threads are interleaving in time and each time I run that, 
I will get different interleaving of those threads. Thread will context switch and the 
order of this context switch is different in each run.  

 

Figure 2: Screenshot of the output for second run 

 

Figure 3: Screenshot of the output for third run 
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Figure 4: Screenshot of the output for fourth run 

(b) Screenshots of the output from running the program with 32 threads and 
explanation of what you have observed.  

Using omp_set_num_threads (32) command before pragma, we can change the thread 
numbers to 32. Now, 32 threads will execute the program. Therefore, we have a team 
of 32 threads. Each thread will run the code on that structure block and each thread 
is running redundantly the same code. Figure 5 shows the output of the program 
when we set the number of the threads to 32. As we can see in the figure, the number 
of the threads is 32.  

 
Figure 5: Screenshot of the output for first run with 32 thread 

Figure 6, shows the screenshot for second, third, and fourth run with 32 threads. As we can see in 
the figure, the order of threads is also different in this case because of the same reason.  
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Figure 6: Screenshot of the output for second, third, and fourth run with 32 thread 

 
1.2 work-sharing 

(a) A copy of the source program with timing added. 

The below code shows the program with timing added. As it is clear from the code, I defined start 
and end variables with indicate start time and end time respectively. Then I put the parallel part of 
the program between start = omp_get_wtime(); and end = omp_get_wtime();. Finally, I found the 
execution time by subtracting the start time and the end time.  

#include <omp.h> 
#include <stdio.h> 
#include <stdlib.h> 
#define CHUNKSIZE 10 
#define N 100 
 
int main (int argc, char *argv[]) { 
    int nthreads, tid, i, chunk; 
    float a[N], b[N], c[N]; 
    double start, end;  
 
    for (i=0; i < N; i++) 
        a[i] = b[i] = i * 1.0; // initialize arrays 
 
    chunk = CHUNKSIZE; 
     
    start = omp_get_wtime(); 
    #pragma omp parallel shared(a,b,c,nthreads,chunk) private(i,tid) 
    { 
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        tid = omp_get_thread_num(); 
        if (tid == 0){ 
            nthreads = omp_get_num_threads(); 
            printf("Number of threads = %d\n", nthreads); 
        } 
        printf("Thread %d starting...\n",tid); 
 
        #pragma omp for schedule(dynamic,chunk) 
        for (i=0; i<N; i++){ 
            c[i] = a[i] + b[i]; 
            printf("Thread %d: c[%d]= %f\n",tid,i,c[i]); 
        } 
    } /* end of parallel section */ 
    end = omp_get_wtime();  
    printf("The execution time is: %f seconds\n", end - start); 
    return(0); 
} 

(b) Screenshot from compiling and running the program with the original dynamic 
scheduling.  

Figure 7 and figure 8 show the screenshot of the running the program with dynamic 
and static scheduling. 

 

Figure 7: Screenshot from running the program with the dynamic scheduling 
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Figure 8: Screenshot from running the program with the static scheduling 

(c) Screenshots from running the program with static and with guided scheduling  

Figure 9 shows the screenshot of the running the program with guided scheduling. 
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Figure 9: Screenshot from running the program with the guided scheduling 

(d) Your conclusions about the different scheduling approaches.  

The #pragma omp for will break up a loop between threads and in this way, a specific 
work will share between different threads. The main question is that how it will break 
the look between different threads. We have three kinds of the scheduling, static, 
dynamic, and guided.  

• Static scheduling: in static scheduling means at compile time figure out the 
close form expression that takes loop iterations and breaks them up into blocks 
and then parcels those out to threads. So, with #pragma omp for 
schedule(static,chunk) we can set the type of the scheduling and chunk is 
defining the chunk size of the divided work. The static scheduling is pre-
determined and predictable by the programmer. 

• Dynamic scheduling: it says that take the loop iterations and put them into a 
logical task queue and then go off and grab an iteration the thread finishes the 
work on that iteration and then it goes back and grab the next iteration. The 
main point is that it is deciding at run time, not compile time. Like static 
scheduling, we can determine the chunk size in dynamic scheduling. Dynamic 
scheduling is unpredictable and we have highly variable work per iteration. 
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• Guided scheduling: in this scheduling, threads dynamically grab blocks of 
iterations. The size of the block starts large and shrink down to size of the 
chunk as the calculation proceed. This scheduling is no use very often these 
days.  

Table 1 shows the run time of static, dynamic, and guided scheduling. The run time 
for static scheduling is 0.000914 seconds and it has the best runtime compared to the 
other scheduling techniques. The reason is that the static scheduling works better for 
loops where each iteration takes roughly equal time, and in this way, we have little 
overhead. In the for loop, all the tasks have roughly equal time and it is only a simple 
addition, and that is why static scheduling has the best run time in this example. The 
dynamic scheduling has an overhead in runtime for scheduling and in this case, 
because the tasks have roughly equal time, we only have an overhead in runtime for 
dynamic scheduling and that’s why the time of the dynamic scheduling is bigger than 
the time of the static scheduling. For loops where each iteration can take very 
different amounts of time, dynamic schedules, work best as the work will be split 
more evenly across threads. The guided scheduling has the worst execution time 
because this scheduling policy is similar to a dynamic schedule, except that the chunk 
size changes as the program runs. It begins with big chunks, but then adjusts to 
smaller chunk sizes if the workload is imbalanced. Therefore, for this loop, it has the 
worst execution time because each iteration of the loop has roughly the same 
execution time and taking a big chunk size at first and then shrink it to smaller chunk 
size does not make sense because at the beginning of the execution, we assign more 
workload to each thread, while that workload can be parallelized and executed with 
more threads easily.   
 

Table 1: Run time of the static, dynamic, and guided scheduling 

 Static Scheduling Dynamic Scheduling Guided scheduling 
Run Time 0.000914 sec 0.000974 sec 0.001283 sec 

 
Conclusion: 

• For loops where each iteration takes roughly equal time, static schedules work 
best because there is a little overhead.  

• For loops where each iteration can take very different amounts of time, 
dynamic scheduling work best because the work will be split more evenly 
across threads.  

• Guided schedule provides a trade-off between the two approach.  
• Choosing the best schedule depends on understanding your loop.  
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1.3 Work-sharing with the sections construct  

(a) Screenshot from compiling and running the program.  

Figure 10 shows a screenshot from running the program.  

 

Figure 10: Screenshot of running the program 

(b) Your conclusions.  

As it was clear from the code, we have two sections. The first section is calculating 
the elements of array c and the second section is calculating the elements of array d. 
As it shows in the figure 10, thread 0 is responsible to calculate the results of the first 
section (c array) and thread 1 is responsible to calculate the second section (d array). 
There were 2 sections and one thread was responsible for calculating the result of the 
section one and some threads was responsible for calculating the results of the section 
two and we had context switching between the threads of those two sections.  

In general, the section is one way to distribute different tasks to different threads. 
Each section marks the different block, which represents a task. The requirement is 
that each block must be independent of the other blocks. Then each thread executes 
one block at a time. Each block is executed only once by one thread. There are not any 
assumptions about the order of the execution of threads. We define the distribution 
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of the tasks to the threads in the implementation phase. If there are more tasks than 
threads, some of the threads will execute multiple blocks. If there are more threads 
than tasks, some of the threads will be idle. 

1.4 Matrix Multiplication 
 
First, I executed the program. The screenshot of the output is in figure 10. As we can 
see in the picture, the execution time for running this program is 0.003070 seconds.  
 

 
Figure 11: Execution of the main program 

Then I should find the maximum size of the matrix which I can use in my system 
without getting a segmentation fault. The maximum size for N in my system was 590 
and the output screenshot of running the program with this value of N has shown in 
the figure 10. As its clear from the figure, the execution time is 1.212002 seconds and 
compared to the previous time its much bigger because we increase the size of the 
matrix.  
 

 
Figure 12: Screenshot of the output when the value of N is 590 

(a) For the outer matrix multiplication loop 

1- Source program listing: for this part I should add the necessary pragma to parallelize the 
outer for loop. The below code shows the parallel version of the program.  

#include <omp.h> 
#include <stdio.h> 
#include <stdlib.h> 
#define N 590 
#define CHUNKSIZE 10 
 
int main(int argc, char *argv[]) { 
    omp_set_num_threads(8);//set number of threads here 
    int i, j, k, nthreads, tid, chunk; 
    double sum; 
    double start, end; // used for timing 
    double A[N][N], B[N][N], C[N][N]; 
     
    chunk = CHUNKSIZE; 
 

    for (i = 0; i < N; i++) { 
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        for (j = 0; j < N; j++) { 
            A[i][j] = j*1; 
            B[i][j] = i*j+2; 
            C[i][j] = j-i*2; 
        } 
    } 
     
    start = omp_get_wtime(); //start time measurement 
    #pragma omp parallel shared(A,B,C,nthreads) private(i,j,k,tid,sum)  
    { 
        tid = omp_get_thread_num(); 
        if (tid == 0) 
        { 
            nthreads = omp_get_num_threads(); 
            printf("Number of threads = %d\n", nthreads); 
        } 
        printf("Thread %d starting...\n",tid); 
 
        #pragma omp for schedule(dynamic,chunk) 
        for (i = 0; i < N; i++)  
        { 
            for (j = 0; j < N; j++)  
            { 
                sum = 0; 
                for (k=0; k < N; k++)  
                { 
                    sum += A[i][k]*B[k][j]; 
                } 
                C[i][j] = sum; 
            } 
        } 
        printf("Thread %d done.\n",tid); 
 
    } 
 
    end = omp_get_wtime(); //end time measurement 
    printf("Time of computation: %f seconds\n", end-start); 
    return(0); 
} 

2- One screenshot from compiling and running the program: The below figure shows 
a screen shot from running the program for N = 590. As we can see in the figure, the 
execution time is 0.828103 seconds while the runtime of the sequential version of 
the program was 1.212002 seconds.  
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Figure 13: Screenshot from running the program 

3- Graphical results of the average timings: Figure 14 shows the screenshot of the 
running the program for 1, 4, 8, and 16 threads. 

 

Figure 14: Screenshot of running the program using 1, 4, 8, and 16 threads 

Table 2 shows the results of the figure 14 in the form of table. As we can see in the 
table 2, the average execution time of running the program using 1 thread is 
1.4296441 seconds. Running the program using 1 thread means that we are running 
it in serial. When we used 4 threads, the average execution time for 10 runs is 
0.9299235 seconds; therefore, 4 Threads run the program faster than 1 thread. The 
average execution time for 8 threads for 10 runs was 0.8291256 seconds, and it means 
that 8 threads run the program faster than 4 threads. The average execution time of 
running the program using 16 thread is 0.8226349 seconds, and this number is 
roughly equal to the average running for 8 threads, and even for some runs, the 
results of the 16 threads is worse than the results of the 8 threads. The reason is that 
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we used the maximum parallelism of the program using 8 threads and 16 threads 
dose not makes it better and even in some cases the context switching, 
communication between threads, memory bound, and I/O bound makes the execution 
time worse than when we have 8 threads.   
 

Table 2: Results of the running the program using 1, 4, 8, and 16 threads 

Run Number Execution Time (Seconds) 
1 thread 4 threads 8 threads 16 threads 

1 1.378122 0.878283 0.885928 0.928287 
2 1.360951 0.868169 0.809751 0.831553 
3 1.599916 0.930071 0.830719 0.808963 
4 1.601839 0.887898 0.839334 0.820304 
5 1.497168 0.845950 0.816654 0.808315 
6 1.576870 0.887874 0.814974 0.816973 
7 1.414737 1.087307 0.818318 0.805335 
8 1.281233 0.980170 0.814377 0.802818 
9 1.301636 1.020559 0.837740 0.800776 

10 1.283969 0.912954 0.823461 0.803025 
Average 1.4296441 0.9299235 0.8291256 0.8226349 

 

Figure 15 shows the graphical results of the table 2. Using 1 thread means that we 
run the program serially and we have the worse execution time. When we use 4 
threads, the execution time is better compared to 1 thread. When we used 8 threads 
the execution time is slightly better compared to 4 threads, but using 16 threads does 
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not make it better because we reached the maximum parallelism of the program 
using 8 threads.  

 

 

Figure 15: Graphical results for the running the program using 1, 4, 8, and 16 threads 

(b) For the middle matrix multiplication loop parallelized 

1- Source program listing: for this part I should add the necessary pragma to parallelize the 
middle for loop. The below code shows the parallel version of the program. 

#include <omp.h> 
#include <stdio.h> 
#include <stdlib.h> 
#define N 590 
#define CHUNKSIZE 10 
 
int main(int argc, char *argv[]) { 
    omp_set_num_threads(8);//set number of threads here 
    int i, j, k, nthreads, tid, chunk; 
    double sum; 
    double start, end; // used for timing 
    double A[N][N], B[N][N], C[N][N]; 
     
    chunk = CHUNKSIZE; 
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    for (i = 0; i < N; i++) { 
        for (j = 0; j < N; j++) { 
            A[i][j] = j*1; 
            B[i][j] = i*j+2; 
            C[i][j] = j-i*2; 
        } 
    } 
     
    start = omp_get_wtime(); //start time measurement 
    for (i = 0; i < N; i++)  
    { 
        #pragma omp parallel shared(A,B,C,nthreads,i) private(j,k,tid,sum)  
        { 
            tid = omp_get_thread_num(); 
            if (tid == 0) 
            { 
                nthreads = omp_get_num_threads(); 
                //printf("Number of threads = %d\n", nthreads); 
            } 
            //printf("Thread %d starting...\n",tid); 
            #pragma omp for schedule(dynamic,chunk) 
            for (j = 0; j < N; j++)  
            { 
                sum = 0; 
                for (k=0; k < N; k++)  
                { 
                    sum += A[i][k]*B[k][j]; 
                } 
                C[i][j] = sum; 
            } 
        //printf("Thread %d done.\n",tid); 
        } 
    } 
 
    end = omp_get_wtime(); //end time measurement 
    printf("Time of computation: %f seconds\n", end-start); 
    return(0); 
} 

 

2- One screenshot from compiling and running the program: The below figure shows 
a screen shot from running the program for N = 590. As we can see in the picture, the 
runtime is 2.364118 seconds and it is bigger compare to the previous one. The reason 
is that we only parallelized the middle loop, and for every iteration of the outer loop, 
it will create 8 threads to calculate the outer loop in parallel. Therefore, we did not 
use the maximum parallelism.  
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Figure 16: Screenshot from running the program 

3- Graphical results of the average timings: Figure 17 shows the screenshot of the 
running the program for 1, 4, 8, and 16 threads. 
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Figure 17: Screenshot of running the program using 1, 4, 8, and 16 threads 

Table 3 shows the results of the figure 17 in the form of table. As we can see in the 
table, the average run time for 1 thread is roughly equal to previous one because we 
are running the program in serial in both cases. The average runtime for 4 threads 
is the best and the reason is that using 4 threads we reached the maximum 
parallelism for middle loop. When we increase the number of threads, the average 
runtime becomes worser because we reached the maximum parallelism using 4 
threads and increasing the number of threads only increase the overhead and context 
switching between threads, make the execution time worser.  
 

Table 3: Results of the running the program using 1, 4, 8, and 16 threads 

Run Number Execution Time (Seconds) 
1 thread 4 threads 8 threads 16 threads 

1 1.386959  0.830258  0.873686  0.885983  
2 1.573611  0.833889  0.848411  0.883812  
3 1.448373  0.864349  0.861084  0.956182  
4 1.521871  0.838649  0.846096  0.873152  
5 2.010568  0.838524  0.845834  0.882266  
6 1.491835  0.840875  0.843689  0.884270  
7 1.449002  0.825657  0.847326  0.874695  
8 1.637450  0.839492  0.845618  0.916051  
9 1.395174  0.851926  0.846189  0.874034  

10 1.420068  0.836555  0.856974  0.873254  
Average 1.5334911 0.8400174 0.8514907 0.8903699 
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Figure 18 shows the graphical results of the table 3.  

 

Figure 18: Graphical results for the running the program using 1, 4, 8, and 16 threads 

(c) Your conclusions and explanations of the results 

Here is a list of conclusions about the results: 

• For the outer matrix multiplication loop, when we have one thread, the average 
run time is 1.4296441 seconds. It is like we run the program in serial because 
just using one thread means that we run the program in serial. When we use 
4 threads, the average execution time is 0.9299235 seconds. Using 4 threads 
means that 4 threads is running the program in parallel and that is why we 
had a spectacular improvement in average execution time with 4 threads 
compared to 1 thread. The average execution time for 8 threads is 0.8291256 
seconds. With 8 threads we had more parallelism compared to 4 threads and 
that is the reason for getting better average execution time for 8 threads 
compared to 4 threads. When we use 16 threads, the average execution time is 
0.8226349 seconds and it is roughly the same as average execution time for 8 
threads. Even in some cases the execution time for 16 threads is worse than 
the execution time for 8 threads. The reason is that when we used 8 threads, 
we reached the maximum parallelism and using 16 threads does not improve 
it significantly and even in some cases the execution time is worser due to the 
overhead of having more than needed threads and the context switching, 
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context switch between threads, communication between threads, memory 
bound, and I/O bound make the execution time worser.  

• For the middle matrix multiplication loop, the average execution time using 1 
thread is 15334911 seconds and it is roughly equal to the average execution 
time with 1 thread for outer loop matrix multiplication. The reason for that is 
for both cases we are using only 1 thread for computation and using only 1 
thread means that we are running the program in serial; therefore, both 
average timing results are roughly the same. The average execution time for 4 
threads is 0.8400174 seconds and as we expected, we had a significant 
improvement compared to using 1 thread. For the middle loop parallelism, we 
reached the maximum parallelism using 4 threads, and using 8 and 16 threads 
dose not makes the run time better and even makes it worser. The average run 
time using 8 threads is 0.8514907 seconds and it is slightly worser compared 
to using 4 thread. The average run time for using 16 threads is 0.8903699 
seconds and it is significantly worse than the average execution time for using 
4 threads and the reason is that we already reached the maximum parallelism 
with 4 threads and using 8 or 16 threads won’t improve it and even make it 
worse due to overhead and context switch between threads, communication 
between threads, memory bound, and I/O bound. 

• When we parallelize the outer loop, we have a better parallelism compared to 
only parallelizing the middle loop. When we only parallelize the middle, for 
every iteration of the outer loop, it will create threads for running the middle 
loop in parallel.  

 

 

 

 


