University of California, Riverside
Department of Computer Science and Engineering

Title: Programming Assignment 1

Course: Multiprocessor Architecture and Programming

Mahbod Afarin

Winter 2021

1.1 “hello world” program

(a) Screenshot from running the hello world program on your computer and
explanation of output and thread order.

Figure 1 shows a screenshot from running the hello world program on my computer.
As it is clear from the figure, since I did not set a specific number of threads, the
system set the number of threads to 4 by default.

mahbodafarinladmin@Rajivs-MacBook-Air code % ./1.1
Hello World from thread
Hello World from thread

Number of threads = 4
Hello World from thread
Hello World from thread
Figure 1: Screenshot of the output for first run

Then I executed the program four times. Figure 1, figure 2, and figure 3 show
screenshot of the output for second, third, and fourth execution respectively. As it is
clear from the figures, the order of the output threads is different in each execution.
The reason for that is the threads are interleaving in time and each time I run that,
I will get different interleaving of those threads. Thread will context switch and the
order of this context switch is different in each run.

mahbodafarinladmin@Rajivs-MacBook-Air code % ./1.1
Hello World from thread = 0

Number of threads = 4
Hello World from thread
Hello World from thread
Hello World from thread

Figure 2: Screenshot of the output for second run

mahbodafarinladmin@Rajivs-MacBook-Air code % ./1.1
Hello World from thread
Hello World from thread

Number of threads = 4
Hello World from thread
Hello World from thread

Figure 3: Screenshot of the output for third run

mahbodafarinladmin@Rajivs-MacBook-Air code % ./1.1
Hello World from thread = 2
Hello World from thread = 0

Number of threads = 4
Hello World from thread = 1
Hello World from thread = 3

Figure 4: Screenshot of the output for fourth run

(b) Screenshots of the output from running the program with 32 threads and
explanation of what you have observed.

Using omp_set_num_threads (532)command before pragma, we can change the thread
numbers to 32. Now, 32 threads will execute the program. Therefore, we have a team
of 32 threads. Each thread will run the code on that structure block and each thread
is running redundantly the same code. Figure 5 shows the output of the program
when we set the number of the threads to 32. As we can see in the figure, the number
of the threads is 32.

mahbodafarinladmin@Rajivs-MacBook-Air code % ./1.1
Hello World from thread = @

Number of threads = 32
Hello World from thread
Hello World from thread
Hello World from thread
Hello World from thread
Hello World from thread
Hello World from thread
Hello World from thread
Hello World from thread
Hello World from thread
Hello World from thread
Hello World from thread
Hello World from thread
Hello World from thread
Hello World from thread
Hello World from thread
Hello World from thread
Hello World from thread
Hello World from thread
Hello World from thread
Hello World from thread
Hello World from thread
Hello World from thread
Hello World from thread
Hello World from thread
Hello World from thread
Hello World from thread
Hello World from thread
Hello World from thread
Hello World from thread
Hello World from thread
Hello World from thread

Figure 5. Screenshot of the output for first run with 32 thread

LoNOOUMAEWNRE

LU | A 1 1 1 (O (I ({1 | A (O 1 O (O (O [[[1

Figure 6, shows the screenshot for second, third, and fourth run with 32 threads. As we can see in
the figure, the order of threads is also different in this case because of the same reason.

mahbodafarinladmin@Rajivs-MacBook-Air code % ./1.1 mahbodafarinladmin@Rajivs-MacBook-Air code % ./1.1 mahbodafarinladmin@Rajivs-MacBook-Air code % ./1.1
Hello World from thread = 0 Hello World from thread = 0 Hello World from thread = @
Number of threads = 32 Number of threads = 32 Number of threads = 32

World from thread Hello World from thread = 16 Hello World from =16

World from thread = 16 Hello World from thread Hello World from 3

World from thread Hello World from thread Hello World from

World from thread Hello World from thread Hello World from

World from thread Hello World from thread Hello World from

World from thread Hello World from thread Hello World from

World from thread Hello World from thread Hello World from

World from thread Hello World from thread Hello World from

World from thread Hello World from thread Hello World from

World from thread Hello World from thread Hello World from

World from thread Hello World from thread Hello World from

World from thread Hello World from thread Hello World from

World from thread Hello World from thread Hello World from

World from thread Hello World from thread Hello World from

World from thread Hello World from thread Hello World from

World from thread Hello World from thread Hello World from

World from thread Hello World from thread 5 Hello World from

World from thread Hello World from thread Hello World from

World from thread Hello World from thread Hello World from

World from thread Hello World from thread Hello World from

World from thread Hello World from thread Hello World from

World from thread Hello World from thread Hello World from

World from thread Hello World from thread Hello World from

World from thread Hello World from thread Hello World from

World from thread Hello World from thread Hello World from

World from thread Hello World from thread Hello World from

World from thread Hello World from thread Hello World from

World from thread Hello World from thread Hello World from

World from thread Hello World from thread Hello World from

World from thread Hello World from thread Hello World from

World from thread Hello World from thread Hello World from

(a) (b) (©
Figure 6: Screenshot of the output for second, third, and fourth run with 32 thread

LTI T T T TV T T T T T T T T T T O TR T

1.2 work-sharing

(a) A copy of the source program with timing added.

The below code shows the program with timing added. As it is clear from the code, I defined start
and end variables with indicate start time and end time respectively. Then I put the parallel part of
the program between start = omp_get wtime(); and end = omp_get_wtime(),. Finally, I found the
execution time by subtracting the start time and the end time.

#include <omp.h>
#include <stdio.h>
#include <stdlib.h>
#define 10
#define 100

main (argc, xargv[]) {
nthreads, tid, i, chunk;
alNI, bINI, cINI;

start, end;

for (i=0; i < N; i++)
alil = b[i]l = 1 * 1.

chunk

start = omp_get_wtime();
#pragma omp parallel shared(a,b,c,nthreads,chunk) private

{

tid = omp_get_thread_num();

if (tid == 0){
nthreads = omp_get_num_threads();
printf("Number of threads = %d\n", nthreads);

b
printf("Thread %d starting...\n",tid);

#pragma omp for schedule(dynamic, chunk
for (i=0; i<N; i++){
cli]l = alil + b[il;
printf("Thread %d: c[%d]= %f\n",tid,i,c[i]);

}

end = omp_get_wtime();

printf("The execution time is: %f seconds\n", end - start);
return(0);

(b) Screenshot from compiling and running the program with the original dynamic
scheduling.

Figure 7 and figure 8 show the screenshot of the running the program with dynamic
and static scheduling.

Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread

94.000000
96.000000
98.000000
100. 000000
102.000000
104.000000
106. 000000
48.000000
108. 000000
50.000000
110. 000000
112.000000
114.000000
116. 000000
118. 000000
52.000000
c[61]= 122.000000
c[27]= 54.000000
: c[28]= 56.000000
: c[29]= 58.000000
: c[62]= 124.000000
: c[63]= 126.000000
: c[64]= 128.000000
: c[65]= 130.000000
: c[66]= 132.000000
: c[67]= 134.000000
: c[68]= 136.000000
: c[69]= 138.000000
: c[70]= 140.000000
: c[71]= 142.000000
: c[72]= 144.000000
: ¢[73]= 146.000000
: c[74]= 148.000000
: ¢[75]= 150.000000
: c[76]= 152.000000
: ¢[77]= 154.000000
Thread 2: c[78]= 156.000000
Thread 2: c[79]= 158.000000
The execution time is: 0.000974 seconds

NNNNNNNNNNNNNNNNNNOOONOSOR R R FEFEFOREO R

Figure 7: Screenshot from running the program with the dynamic scheduling

Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread

c[51]= 102.000000
c[52]= 104.000000
c[53]= 106.000000
c[54]= 108.000000
c[55]= 110.000000
c[56]= 112.000000
c[57]= 114.000000
c[58]= 116.000000
c[59]= 118.000000
c[90]= 180.000000
c[91]= 182.000000
c[92]= 184.000000
c[93]= 186.000000
c[94]= 188.000000
c[95]= 190.000000
c[96]= 192.000000
c[97]= 194.000000
c[98]= 196.000000
c[99]= 198.000000
c[31]= 62.000000
c[32]= 64.000000
c[33]= 66.000000
c[34]= 68.000000
c[35]= 70.000000
c[36]= 72.000000
c[37]= 74.000000
c[38]= 76.000000
c[39]= 78.000000
c[70]= 140.000000
c[71]= 142.000000
c[72]= 144.000000
c[73]= 146.000000
c[74]= 148.000000
c[75]= 150.000000
c[76]= 152.000000
c[77]= 154.000000
Thread c[78]= 156.000000
Thread 3: c[79]= 158.000000
The execution time is: 0.000914 seconds

Figure 8: Screenshot from running the program with the static scheduling

WWWWWWWwWwWwWwWwWwWwwWwwwwwwrRr R R R R R R R R R

(c) Screenshots from running the program with static and with guided scheduling

Figure 9 shows the screenshot of the running the program with guided scheduling.

Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread

c[81]= 162.000000
c[82]= 164.000000
c[83]= 166.000000
starting...

: c[93]= 186.000000
: c[14]= 28.000000
: c[94]= 188.000000
: c[95]= 190.000000
: c[96]= 192.000000
: c[97]= 194.000000
: c[84]= 168.000000
: c[85]= 170.000000
: c[86]= 172.000000
: c[87]= 174.000000
: c[98]= 196.000000
: c[88]= 176.000000
: c[89]= 178.000000
: c[90]= 180.000000
: c[91]= 182.000000
: c[92]= 184.000000
: c[15]= 30.000000
: c[99]= 198.000000
: c[16]= 32.000000
: c[17]= 34.000000
: c[18]= 36.000000
: c[19]= 38.000000
: c[20]= 40.000000
: c[21]= 42.000000
: c[22]= 44.000000
: c[23]= 46.000000
: c[24]= 48.000000
: c[25]= 50.000000
: c[26]= 52.000000
: c[27]= 54.000000
: c[28]= 56.000000
: c[29]= 58.000000
: c[30]= 60.000000
Thread 3: c[31]= 62.000000
Thread 3: c[32]= 64.000000
The execution time is: 0.001283 seconds

1l
1=
1=
2
2
0
2
2
2
2
1
1
1
1
2
1
1
1
1
1
0
2
0
0
0
0
0
0
0
3
3
3
3
3
3
3
3
3
3

Figure 9: Screenshot from running the program with the guided scheduling

(d) Your conclusions about the different scheduling approaches.

The #pragma omp for will break up a loop between threads and in this way, a specific
work will share between different threads. The main question is that how it will break
the look between different threads. We have three kinds of the scheduling, static,
dynamic, and guided.

Static scheduling: in static scheduling means at compile time figure out the
close form expression that takes loop iterations and breaks them up into blocks
and then parcels those out to threads. So, with #pragma omp for
schedule(static,chunk) we can set the type of the scheduling and chunk is
defining the chunk size of the divided work. The static scheduling is pre-
determined and predictable by the programmer.

Dynamic scheduling: it says that take the loop iterations and put them into a
logical task queue and then go off and grab an iteration the thread finishes the
work on that iteration and then it goes back and grab the next iteration. The
main point is that it is deciding at run time, not compile time. Like static
scheduling, we can determine the chunk size in dynamic scheduling. Dynamic
scheduling is unpredictable and we have highly variable work per iteration.

e (Guided scheduling: in this scheduling, threads dynamically grab blocks of
iterations. The size of the block starts large and shrink down to size of the
chunk as the calculation proceed. This scheduling is no use very often these
days.

Table 1 shows the run time of static, dynamic, and guided scheduling. The run time
for static scheduling is 0.000914 seconds and it has the best runtime compared to the
other scheduling techniques. The reason is that the static scheduling works better for
loops where each iteration takes roughly equal time, and in this way, we have little
overhead. In the for loop, all the tasks have roughly equal time and it is only a simple
addition, and that is why static scheduling has the best run time in this example. The
dynamic scheduling has an overhead in runtime for scheduling and in this case,
because the tasks have roughly equal time, we only have an overhead in runtime for
dynamic scheduling and that’s why the time of the dynamic scheduling is bigger than
the time of the static scheduling. For loops where each iteration can take very
different amounts of time, dynamic schedules, work best as the work will be split
more evenly across threads. The guided scheduling has the worst execution time
because this scheduling policy is similar to a dynamic schedule, except that the chunk
size changes as the program runs. It begins with big chunks, but then adjusts to
smaller chunk sizes if the workload is imbalanced. Therefore, for this loop, it has the
worst execution time because each iteration of the loop has roughly the same
execution time and taking a big chunk size at first and then shrink it to smaller chunk
size does not make sense because at the beginning of the execution, we assign more
workload to each thread, while that workload can be parallelized and executed with
more threads easily.

Table 1° Run time of the static, dynamic, and guided scheduling

Static Scheduling Dynamic Scheduling Guided scheduling
Run Time 0.000914 sec 0.000974 sec 0.001283 sec

Conclusion:

e For loops where each iteration takes roughly equal time, static schedules work
best because there is a little overhead.

e For loops where each iteration can take very different amounts of time,
dynamic scheduling work best because the work will be split more evenly
across threads.

e Guided schedule provides a trade-off between the two approach.

e (Choosing the best schedule depends on understanding your loop.

1.3 Work-sharing with the sections construct
(a) Screenshot from compiling and running the program.

Figure 10 shows a screenshot from running the program.

Thread 1:
Thread 1:
Thread 0:
Thread 0:
Thread 0:
Thread 0:
Thread 0:
Thread 0:
Thread 0:
Thread 0:
Thread 0:
Thread 0:
Thread 0:
Thread 0:
Thread 0:
Thread 0:
Thread 0:
Thread 0:
Thread 0:
Thread 0:
Thread 0:
Thread 0:
Thread 0:
Thread 0:
Thread 0:
Thread 0:
Thread 0:
Thread 0: c[41 124.849998
Thread 0: c[42]= 127.349998
Thread 0: c[43]= 129.850006
Thread 0: c[44]= 132.350006
Thread 0: c[45]= 134.850006
Thread 0: c[46]= 137.350006
Thread 0: c[47]= 139.850006
Thread 0: c[48]= 142.350006
Thread 0: c[49]= 144.850006
Thread @ done.
Thread 1: = 1270.500000
Thread 1 = 1365.524902
Thread 1 = 1463.549927
Thread 1 = 1564.574951
Thread 1 = 1668.599976
Thread 1 = 1775.625000
Thread 1: = 1885.649902

1

1

1

1

1089.449951
1178.474976
62.349998
64.849998
67.349998
69.849998
72.349998
74.849998
77.349998
79.849998
82.349998
84.849998
87.349998
89.849998
92.349998
94.849998
97.349998
99.849998
102.349998
104.849998
107.349998
109.849998
112.349998
114.849998
117.349998

Thread 0: c[35]=
Thread 0: c[36]=
Thread 0: c[37]=

109.849998
112.349998
114.849998
117.349998
119.849998

mahbodafarinladmin@Rajivs-MacBook-Air code % ./1.3
Thread 2 done.

Thread 3 starting...
Number of threads = 4
Thread 3 done.

Thread 1 starting...
Thread 1 doing section 2
Thread 1: d[0]= 0.000000
Thread 1: d[1]= 35.025002
Thread 1: d[2]= 73.050003
Thread 1: d[3]= 114.075005

]
]
]
Thread 0: c[38]=
Thread 0: c[39]=
Thread 0: c[40]= 122.349998
Thread 0: c[41]= 124.849998
Thread 0: c[42]= 127.349998
Thread 0: c[43]= 129.850006
Thread 0: c[44]= 132.350006
Thread 0: c[45]= 134.850006
Thread 1: d[4]= 158.100006]= 137.350006
Thread 1: d[5]= 205.125000]
Thread 1: d[6]= 255.150009]
Thread 1: d[7]= 308.175018]
Thread @ starting...
Thread @ doing section 1
Thread 0: c[0]= 22.350000
Thread 0: c[1]= 24.850000
Thread 0: c[2]= 27.350000
Thread 0: c[3]= 29.850000
Thread 1: d[8]= 364.200012
Thread 1: d[9]= 423.225006
Thread 0: c[4]= 32.349998
Thread @: c[5]= 34.849998
Thread @: c[6]= 37.349998
Thread @: c[7]= 39.849998
Thread 0: c[8]= 42.349998
Thread 0: c[9]= 44.849998
Thread 1: d[10]= 485.249969
Thread 1: d[1 550.274963
Thread 1: d[1 18.299988
Thread 1: 89.324951
Thread 1: d[1 63.349976
Thread 1: d[15]= 840.374939
Thread 0: c[10]= 47.349998
Thread 0: c[11]= 49.849998
Thread 0:
Thread 0:
Thread 0:
Thread 0:
Thread 1:
Thread 1: d[17]= 1003.424988

Thread 0: c[46]=
Thread 0: c[47]=
Thread 0: c[48]=
Thread 0: c[49]=
Thread @ done.
Thread 1: d[20
Thread 1: d[21
Thread

139.850006
142.350006
144.850006

1270.500000
1365.524902
1463.549927
1564.574951
1668.599976
1775.625000
1885.649902
1998.674927
2114.699951
2233.724854
2355.750000
2480.774902
2608.799805
2739.824951

: d[24
: d[25
: dl26
: dl27
: d[ZB

[T R TR T R T T T T T T T T TR TR TR TR TR TR T

: d[30
: dI31
: d[32

: d[35
: d[36
: d[37

3010.875000
3150.899902
3293.924805
3439.949951
3588.974854
: dl40
: dla1
: dl42
: d[43
: dl44
: d[45
: d[46
: d[47

3741.000000
3896.024902
4054.049805
4215.074707
4379.100098
4546.125000
4716.149902
4889.174805
5065.199707
5244.225098

Thread 1: d[18]= 1089.449951
Thread 1: d[19]= 1178.474976
Thread 0:
Thread 0:
Thread 0:

Thread
Thread 1: d[48
Thread 1: d[49
= 2233.724854 Thread 1 done.
= 2355.750000 mahbodafarinladmin@Rajivs-MacBook-Air code %

(b) (c)

Thread = 1998.674927

1=
il I=
1 I=
1 I=
1 I=
1 1=
1 1=
1 1=
1 1=
1 1=
1 1=
1 I=
1 =
1 I=
1: d[34]= 2873.849854
1 I=
1 I=
1 1=
1 1=
1 1=
1 1=
1 1=
il I=
1 =
1 I=
1 I=
1 1=
1 I=
1 1=

1=

Thread 1: = 2114.699951

Thread 1:
Thread 1:

Figure 10: Screenshot of running the program
(b) Your conclusions.

As it was clear from the code, we have two sections. The first section is calculating
the elements of array ¢ and the second section is calculating the elements of array d.
As it shows in the figure 10, thread 0 is responsible to calculate the results of the first
section (c array) and thread 1 is responsible to calculate the second section (d array).
There were 2 sections and one thread was responsible for calculating the result of the
section one and some threads was responsible for calculating the results of the section
two and we had context switching between the threads of those two sections.

In general, the section is one way to distribute different tasks to different threads.
Each section marks the different block, which represents a task. The requirement is
that each block must be independent of the other blocks. Then each thread executes
one block at a time. Each block is executed only once by one thread. There are not any
assumptions about the order of the execution of threads. We define the distribution

of the tasks to the threads in the implementation phase. If there are more tasks than
threads, some of the threads will execute multiple blocks. If there are more threads
than tasks, some of the threads will be idle.

1.4 Matrix Multiplication

First, I executed the program. The screenshot of the output is in figure 10. As we can
see in the picture, the execution time for running this program is 0.003070 seconds.

mahbodafarinladmin@Rajivs-MacBook-Air code % /usr/local/opt/1llvm/bin/clang -fopenmp -L/usr/local/opt/1llvm/lib 1.4.c
-0 1.4

mahbodafarinladmin@Rajivs-MacBook-Air code % ./1.4
Time of computation: 0.003070 seconds

Figure 11° Execution of the main program

Then I should find the maximum size of the matrix which I can use in my system
without getting a segmentation fault. The maximum size for N in my system was 590
and the output screenshot of running the program with this value of N has shown in
the figure 10. As its clear from the figure, the execution time is 1.212002 seconds and
compared to the previous time its much bigger because we increase the size of the
matrix.

mahbodafarinladmin@Rajivs-MacBook-Air code % /usr/local/opt/llvm/bin/clang -fopenmp -L/usr/local/opt/1lvm/lib 1.4.c -0 1.4
mahbodafarinladmin@Rajivs-MacBook-Air code % ./1.4

Time of computation: 1.212002 seconds
Figure 12: Screenshot of the output when the value of N is 590

(a) For the outer matrix multiplication loop

1- Source program listing: for this part I should add the necessary pragma to parallelize the
outer for loop. The below code shows the parallel version of the program.

#include <stdlib.h>
#define 590
#define 10

main (argc, xargv[]) {
omp_set_num_threads(8);

i, Jj, k, nthreads, tid, chunk;
sum;
start, end;

AINTINI, BINTIN], CINJINI;

10

for (j = 0;
Alil[j]
Bli] [j]
Cli] [j]

start = omp_get_wtime();
#pragma omp parallel shared(A,B,C,nthreads) private(i,j,k,tid
{
tid = omp_get_thread_num();
if (tid == 0)
{
nthreads = omp_get_num_threads();
printf("Number of threads = %d\n", nthreads);

b
printf("Thread %d starting...\n",tid);

#pragma omp for schedule(dynamic, chunk
for (1 = 0; 1 < N; i++)
{
for (j = 0; j < N; j++)
{
sum = 0;
for (k=0; k < N; k++)
{
sum += A[i] [kKI*B[k][j];
}
Clil[j]1 = sum;

}
printf("Thread %d done.\n",tid);

end = omp_get_wtime();
printf("Time of computation: %f seconds\n", end-start);
return(0);

2- One screenshot from compiling and running the program: The below figure shows
a screen shot from running the program for N = 590. As we can see in the figure, the
execution time is 0.828103 seconds while the runtime of the sequential version of
the program was 1.212002 seconds.

Number of threads = 8
Thread 0 starting...
Thread 2 starting...
Thread 1 starting...
Thread 3 starting...
Thread 7 starting...
Thread 6 starting...
Thread 5 starting...
Thread 4 starting...
Thread © done.

Thread 1 done.

Thread 4 done.

Thread 3 done.

Thread 5 done.

Thread 2 done.

Thread 7 done.

Thread 6 done.

Time of computation: 0.828103 seconds

ONNUVTWAFEFOOA_ARUIOONWENGS

Figure 13- Screenshot from running the program

3- Graphical results of the average timings: Figure 14 shows the screenshot of the
running the program for 1, 4, 8, and 16 threads.

mahbodafarinladmin@Rajivs-MacBook-Air code % for i in {1..10}; do ./1.4; done mahbodafarinladmin@Rajivs-MacBook-Air code % for i in {1..10}; do ./1.4; done
Time of computation: 1.378122 seconds Time of computation: 0.878283 seconds
Time of computation: 1.360951 seconds i computation: 0.868169 seconds
Time of computation: 1.599916 seconds Time of computation: 0.930071 seconds
Time of computation: 1.601839 seconds Time of computation: 0.887898 seconds
Time of computation: 1.497168 seconds Time of computation: 0.845950 seconds
Time of computation: 1.576870 seconds i computation: 0.887874 seconds
Time of computation: 1.414737 seconds i computation: 1.087307 seconds
Time of computation: 1.281233 seconds i computation: 0.980170 seconds
Time of computation: 1.301636 seconds i computation: 1.020559 seconds
Time of computation: 1.283969 seconds Time of computation: 0.912954 seconds

(a) Running the program with 1 thread (b) Running the program with 4 thread

mahbodafarinladmin@Raj ivs-MacBook-Air code % for i in {1..10}; do ./1.4; done mahbodafarinladmin@Rajivs-MacBook-Air code % for i in {1..10}; do ./1.4; done
Time of computation: 0.885928 seconds 287 seconds

Time of computation: 0.809751 seconds Time of computation: 0.831553 seconds

Time of computation: 0.830719 seconds Time of computation: 0.808963 seconds

Time of computation: 0.839334 seconds Time of computation: 820304 seconds

Time of computation: 0.816654 seconds Time of computation: 0.808315 seconds

Time of computation: 0.814974 seconds Time of computation: 0.816973 seconds

Time of computation: 0.818318 seconds Time of computation: 0.805335 seconds
Time of computation: 0.814377 seconds Time of computation: 0.802818 seconds
Time of computation: 0.837740 seconds Time of computation: 0.800776 seconds
Time of computation: 0.823461 seconds Time of computation: 0.803025 seconds

(c) Running the program with 8 thread (a) Running the program with 16 thread

Figure 14° Screenshot of running the program using 1, 4, 8, and 16 threads

Table 2 shows the results of the figure 14 in the form of table. As we can see in the
table 2, the average execution time of running the program using 1 thread is
1.4296441 seconds. Running the program using 1 thread means that we are running
it in serial. When we used 4 threads, the average execution time for 10 runs is
0.9299235 seconds; therefore, 4 Threads run the program faster than 1 thread. The
average execution time for 8 threads for 10 runs was 0.8291256 seconds, and it means
that 8 threads run the program faster than 4 threads. The average execution time of
running the program using 16 thread is 0.8226349 seconds, and this number is
roughly equal to the average running for 8 threads, and even for some runs, the
results of the 16 threads is worse than the results of the 8 threads. The reason is that

12

we used the maximum parallelism of the program using 8 threads and 16 threads
dose not makes it better and even in some cases the context switching,
communication between threads, memory bound, and I/O bound makes the execution
time worse than when we have 8 threads.

Table 2: Results of the running the program using 1, 4, 8, and 16 threads

Run Number Execution Time (Seconds)

1 thread 4 threads 8 threads 16 threads

1 1.378122 0.878283 0.885928 0.928287
2 1.360951 0.868169 0.809751 0.831553
3 1.599916 0.930071 0.830719 0.808963
4 1.601839 0.887898 0.839334 0.820304
5 1.497168 0.845950 0.816654 0.808315
6 1.576870 0.887874 0.814974 0.816973
7 1.414737 1.087307 0.818318 0.805335
8 1.281233 0.980170 0.814377 0.802818
9 1.301636 1.020559 0.837740 0.800776
10 1.283969 0.912954 0.823461 0.803025
Average 1.4296441 0.9299235 0.8291256 0.8226349

Figure 15 shows the graphical results of the table 2. Using 1 thread means that we
run the program serially and we have the worse execution time. When we use 4
threads, the execution time is better compared to 1 thread. When we used 8 threads
the execution time is slightly better compared to 4 threads, but using 16 threads does

13

not make it better because we reached the maximum parallelism of the program
using 8 threads.

1.8

1.6

0| | ‘ ‘ | | | | | | |
1 2 3 4 5 6 7 8 9 10

Average

Run Time (Seconds)
o o o = e
=Y (o)) [o0] = N ~

o
N

Run Number

m 1 thread 4 threads 8 threads 16 threads

Figure 15° Graphical results for the running the program using 1, 4, 8, and 16 threads
(b) For the middle matrix multiplication loop parallelized

1- Source program listing: for this part I should add the necessary pragma to parallelize the
middle for loop. The below code shows the parallel version of the program.

#include <omp.h>
#include <stdio.h>

main(argc, sargv[]) {
omp_set_num_threads(8);

i, Jj, k, nthreads, tid, chunk;
sum;
start, end;

AINTINI, BINTIN], CINJINI;

14

for (1 =0; i < N; i++) {
for (j = 0; j < N; j++) {
Alil[j] j*1;
B[i]l []] ixj+2;
Cl[il [j] j—i%2;

by

start = omp_get_wtime();
for (1 =0; i < N; i++)
{
#pragma omp parallel shared(A,B,C,nthreads,i) private(j,k,tid
{
tid = omp_get_thread_num();
if (tid == 0)
{

nthreads = omp_get_num_threads();

}

#pragma omp for schedule(dynamic, chunk
for (j = 0; j < N; j++)
{

sum = 0;

for (k=0; k < N; k++)

{

sum += A[i] [kKI*B[k][j];
}
Clil[j]1 = sum;

end = omp_get_wtime();
printf("Time of computation: %f seconds\n", end-start);
return(0);

2- One screenshot from compiling and running the program: The below figure shows
a screen shot from running the program for N = 590. As we can see in the picture, the
runtime is 2.364118 seconds and it is bigger compare to the previous one. The reason
is that we only parallelized the middle loop, and for every iteration of the outer loop,
1t will create 8 threads to calculate the outer loop in parallel. Therefore, we did not
use the maximum parallelism.

Thread 1 done.
Thread 6 done.
Thread 2 done.
Thread 3 done.
Thread 4 done.
Number of threads = 8
Thread @ starting...
Thread 1 starting...
Thread 2 starting...
Thread 4 starting...
Thread 6 starting...
Thread 5 starting...
Thread 7 starting...
Thread 3 starting...
Thread @ done.
Thread 6 done.
Thread 4 done.
Thread 3 done.
Thread 1 done.
Thread 5 done.
Thread 2 done.
Thread 7 done.

Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread 3 done.

Thread 6 done.

Time of computation: 2.364118 seconds

starting...
starting...
starting...
starting...
starting...
starting...
starting...
starting...
done.
done.
done.
done.
done.
done.

0
1
p
4
6
5
7
3
0
6
4
3
1
5
P
7
Number of threads
0
3
1
P
4
5
7
6
0
1
4
5
P
7
3
6

Figure 16: Screenshot from running the program

3- Graphical results of the average timings: Figure 17 shows the screenshot of the
running the program for 1, 4, 8, and 16 threads.

16

mahbodafarinladmin@Rajivs-MacBook-Air code % for i in {1..10}; do ./1.4; done
Time of computation:
Time of computation:
Time of computation:
Time of computation:

Time of computation:
Time of computation:
Time of computation:
Time of computation:
Time of computation:

1.386959 seconds
1.573611 seconds
1.448373 seconds
1.521871 seconds
2.010568 seconds
1.491835 seconds
1.449002 seconds
1.637450 seconds
1.395174 seconds

mahbodafarinladmin@Rajivs-MacBook-Air code % for i in {1..10}; do ./1.4; done

Time of computation: 0.830258 seconds
: 0.833889 seconds

.864349 seconds

.838649 seconds

.838524 seconds

0.840875 seconds

.825657 seconds

: 0.839492 seconds

Time of computation: 0.851926 seconds
Time of computation: 0.836555 seconds

Time of computation: 1.420068 seconds

(a) Running the program with 1 thread

mahbodafarinladmin@Rajivs-MacBook-Air code % for i in {1..10}; do ./1.4; done
Time of computation: 0.885983 seconds
.883812 seconds

mahbodafarinladmin@Rajivs-MacBook-Air code % for i in {1..10}; do ./1.4; done
Time of computation: 0.873686 seconds
Time of computation: 0.848411 seconds
Time of computation: 0.861084 seconds
Time of computation: 0.846096 seconds
Time of computation: 0.845834 seconds
Time of computation: 0.843689 seconds

.956182 seconds

Time of computation: 0.847326 seconds
Time of computation: 0.845618 seconds
Time of computation: 0.846189 seconds
Time of computation: 0.856974 seconds

.874695 seconds
: 0.916051 seconds
Time of computation: 0.874034 seconds
Time of computation: 0.873254 seconds

(a) Running the programiwith 16 thread

(c) Running the program with 8 thread

Figure 17 Screenshot of running the program using 1, 4, 8, and 16 threads

Table 3 shows the results of the figure 17 in the form of table. As we can see in the
table, the average run time for 1 thread is roughly equal to previous one because we
are running the program in serial in both cases. The average runtime for 4 threads
is the best and the reason is that using 4 threads we reached the maximum
parallelism for middle loop. When we increase the number of threads, the average
runtime becomes worser because we reached the maximum parallelism using 4
threads and increasing the number of threads only increase the overhead and context
switching between threads, make the execution time worser.

Table 3 Results of the running the program using 1, 4, 8, and 16 threads

Execution Time (Seconds)

Run Number 4 threads 8 threads

1 thread 16 threads

© 00 J0 Ot LWNH

10

Average

1.386959
1.573611
1.448373
1.521871
2.010568
1.491835
1.449002
1.637450
1.395174
1.420068

1.5334911

0.830258
0.833889
0.864349
0.838649
0.838524
0.840875
0.825657
0.839492
0.851926
0.836555

0.8400174

0.873686
0.848411
0.861084
0.846096
0.845834
0.843689
0.847326
0.845618
0.846189
0.856974

0.8514907

0.885983
0.883812
0.956182
0.873152
0.882266
0.884270
0.874695
0.916051
0.874034
0.873254
0.8903699

Figure 18 shows the graphical results of the table 3.

2.5

2
m
o
c

8 15
Q
K2
]
£

= 1
c
=]
[~

0

1 2 3 4 5 6 7 8 9 10 Average

Run Number

B 1thread m4threads 8 threads 16 threads

Figure 18° Graphical results for the running the program using 1, 4, 8, and 16 threads

(c) Your conclusions and explanations of the results

Here 1s a list of conclusions about the results:

For the outer matrix multiplication loop, when we have one thread, the average
run time is 1.4296441 seconds. It is like we run the program in serial because
just using one thread means that we run the program in serial. When we use
4 threads, the average execution time is 0.9299235 seconds. Using 4 threads
means that 4 threads is running the program in parallel and that is why we
had a spectacular improvement in average execution time with 4 threads
compared to 1 thread. The average execution time for 8 threads is 0.8291256
seconds. With 8 threads we had more parallelism compared to 4 threads and
that is the reason for getting better average execution time for 8 threads
compared to 4 threads. When we use 16 threads, the average execution time is
0.8226349 seconds and it is roughly the same as average execution time for 8
threads. Even in some cases the execution time for 16 threads is worse than
the execution time for 8 threads. The reason is that when we used 8 threads,
we reached the maximum parallelism and using 16 threads does not improve
it significantly and even in some cases the execution time is worser due to the
overhead of having more than needed threads and the context switching,

18

context switch between threads, communication between threads, memory
bound, and I/0 bound make the execution time worser.

For the middle matrix multiplication loop, the average execution time using 1
thread 1s 15334911 seconds and it is roughly equal to the average execution
time with 1 thread for outer loop matrix multiplication. The reason for that is
for both cases we are using only 1 thread for computation and using only 1
thread means that we are running the program in serial; therefore, both
average timing results are roughly the same. The average execution time for 4
threads is 0.8400174 seconds and as we expected, we had a significant
improvement compared to using 1 thread. For the middle loop parallelism, we
reached the maximum parallelism using 4 threads, and using 8 and 16 threads
dose not makes the run time better and even makes it worser. The average run
time using 8 threads is 0.8514907 seconds and it is slightly worser compared
to using 4 thread. The average run time for using 16 threads is 0.8903699
seconds and it is significantly worse than the average execution time for using
4 threads and the reason is that we already reached the maximum parallelism
with 4 threads and using 8 or 16 threads won’t improve it and even make it
worse due to overhead and context switch between threads, communication
between threads, memory bound, and I/0 bound.

When we parallelize the outer loop, we have a better parallelism compared to
only parallelizing the middle loop. When we only parallelize the middle, for
every iteration of the outer loop, it will create threads for running the middle
loop in parallel.

19

