
 1

University of California, Riverside
Department of Computer Science and Engineering

Title: Programming Assignment 1

Course: Multiprocessor Architecture and Programming

Mahbod Afarin

Winter 2021

 2

1.1 “hello world” program

(a) Screenshot from running the hello world program on your computer and
explanation of output and thread order.

Figure 1 shows a screenshot from running the hello world program on my computer.
As it is clear from the figure, since I did not set a specific number of threads, the
system set the number of threads to 4 by default.

Figure 1: Screenshot of the output for first run

Then I executed the program four times. Figure 1, figure 2, and figure 3 show
screenshot of the output for second, third, and fourth execution respectively. As it is
clear from the figures, the order of the output threads is different in each execution.
The reason for that is the threads are interleaving in time and each time I run that,
I will get different interleaving of those threads. Thread will context switch and the
order of this context switch is different in each run.

Figure 2: Screenshot of the output for second run

Figure 3: Screenshot of the output for third run

 3

Figure 4: Screenshot of the output for fourth run

(b) Screenshots of the output from running the program with 32 threads and
explanation of what you have observed.

Using omp_set_num_threads (32) command before pragma, we can change the thread
numbers to 32. Now, 32 threads will execute the program. Therefore, we have a team
of 32 threads. Each thread will run the code on that structure block and each thread
is running redundantly the same code. Figure 5 shows the output of the program
when we set the number of the threads to 32. As we can see in the figure, the number
of the threads is 32.

Figure 5: Screenshot of the output for first run with 32 thread

Figure 6, shows the screenshot for second, third, and fourth run with 32 threads. As we can see in
the figure, the order of threads is also different in this case because of the same reason.

 4

Figure 6: Screenshot of the output for second, third, and fourth run with 32 thread

1.2 work-sharing

(a) A copy of the source program with timing added.

The below code shows the program with timing added. As it is clear from the code, I defined start
and end variables with indicate start time and end time respectively. Then I put the parallel part of
the program between start = omp_get_wtime(); and end = omp_get_wtime();. Finally, I found the
execution time by subtracting the start time and the end time.

#include <omp.h>
#include <stdio.h>
#include <stdlib.h>
#define CHUNKSIZE 10
#define N 100

int main (int argc, char *argv[]) {
 int nthreads, tid, i, chunk;
 float a[N], b[N], c[N];
 double start, end;

 for (i=0; i < N; i++)
 a[i] = b[i] = i * 1.0; // initialize arrays

 chunk = CHUNKSIZE;

 start = omp_get_wtime();
 #pragma omp parallel shared(a,b,c,nthreads,chunk) private(i,tid)
 {

 5

 tid = omp_get_thread_num();
 if (tid == 0){
 nthreads = omp_get_num_threads();
 printf("Number of threads = %d\n", nthreads);
 }
 printf("Thread %d starting...\n",tid);

 #pragma omp for schedule(dynamic,chunk)
 for (i=0; i<N; i++){
 c[i] = a[i] + b[i];
 printf("Thread %d: c[%d]= %f\n",tid,i,c[i]);
 }
 } /* end of parallel section */
 end = omp_get_wtime();
 printf("The execution time is: %f seconds\n", end - start);
 return(0);
}

(b) Screenshot from compiling and running the program with the original dynamic
scheduling.

Figure 7 and figure 8 show the screenshot of the running the program with dynamic
and static scheduling.

Figure 7: Screenshot from running the program with the dynamic scheduling

 6

Figure 8: Screenshot from running the program with the static scheduling

(c) Screenshots from running the program with static and with guided scheduling

Figure 9 shows the screenshot of the running the program with guided scheduling.

 7

Figure 9: Screenshot from running the program with the guided scheduling

(d) Your conclusions about the different scheduling approaches.

The #pragma omp for will break up a loop between threads and in this way, a specific
work will share between different threads. The main question is that how it will break
the look between different threads. We have three kinds of the scheduling, static,
dynamic, and guided.

• Static scheduling: in static scheduling means at compile time figure out the
close form expression that takes loop iterations and breaks them up into blocks
and then parcels those out to threads. So, with #pragma omp for
schedule(static,chunk) we can set the type of the scheduling and chunk is
defining the chunk size of the divided work. The static scheduling is pre-
determined and predictable by the programmer.

• Dynamic scheduling: it says that take the loop iterations and put them into a
logical task queue and then go off and grab an iteration the thread finishes the
work on that iteration and then it goes back and grab the next iteration. The
main point is that it is deciding at run time, not compile time. Like static
scheduling, we can determine the chunk size in dynamic scheduling. Dynamic
scheduling is unpredictable and we have highly variable work per iteration.

 8

• Guided scheduling: in this scheduling, threads dynamically grab blocks of
iterations. The size of the block starts large and shrink down to size of the
chunk as the calculation proceed. This scheduling is no use very often these
days.

Table 1 shows the run time of static, dynamic, and guided scheduling. The run time
for static scheduling is 0.000914 seconds and it has the best runtime compared to the
other scheduling techniques. The reason is that the static scheduling works better for
loops where each iteration takes roughly equal time, and in this way, we have little
overhead. In the for loop, all the tasks have roughly equal time and it is only a simple
addition, and that is why static scheduling has the best run time in this example. The
dynamic scheduling has an overhead in runtime for scheduling and in this case,
because the tasks have roughly equal time, we only have an overhead in runtime for
dynamic scheduling and that’s why the time of the dynamic scheduling is bigger than
the time of the static scheduling. For loops where each iteration can take very
different amounts of time, dynamic schedules, work best as the work will be split
more evenly across threads. The guided scheduling has the worst execution time
because this scheduling policy is similar to a dynamic schedule, except that the chunk
size changes as the program runs. It begins with big chunks, but then adjusts to
smaller chunk sizes if the workload is imbalanced. Therefore, for this loop, it has the
worst execution time because each iteration of the loop has roughly the same
execution time and taking a big chunk size at first and then shrink it to smaller chunk
size does not make sense because at the beginning of the execution, we assign more
workload to each thread, while that workload can be parallelized and executed with
more threads easily.

Table 1: Run time of the static, dynamic, and guided scheduling

 Static Scheduling Dynamic Scheduling Guided scheduling
Run Time 0.000914 sec 0.000974 sec 0.001283 sec

Conclusion:

• For loops where each iteration takes roughly equal time, static schedules work
best because there is a little overhead.

• For loops where each iteration can take very different amounts of time,
dynamic scheduling work best because the work will be split more evenly
across threads.

• Guided schedule provides a trade-off between the two approach.
• Choosing the best schedule depends on understanding your loop.

 9

1.3 Work-sharing with the sections construct

(a) Screenshot from compiling and running the program.

Figure 10 shows a screenshot from running the program.

Figure 10: Screenshot of running the program

(b) Your conclusions.

As it was clear from the code, we have two sections. The first section is calculating
the elements of array c and the second section is calculating the elements of array d.
As it shows in the figure 10, thread 0 is responsible to calculate the results of the first
section (c array) and thread 1 is responsible to calculate the second section (d array).
There were 2 sections and one thread was responsible for calculating the result of the
section one and some threads was responsible for calculating the results of the section
two and we had context switching between the threads of those two sections.

In general, the section is one way to distribute different tasks to different threads.
Each section marks the different block, which represents a task. The requirement is
that each block must be independent of the other blocks. Then each thread executes
one block at a time. Each block is executed only once by one thread. There are not any
assumptions about the order of the execution of threads. We define the distribution

 10

of the tasks to the threads in the implementation phase. If there are more tasks than
threads, some of the threads will execute multiple blocks. If there are more threads
than tasks, some of the threads will be idle.

1.4 Matrix Multiplication

First, I executed the program. The screenshot of the output is in figure 10. As we can
see in the picture, the execution time for running this program is 0.003070 seconds.

Figure 11: Execution of the main program

Then I should find the maximum size of the matrix which I can use in my system
without getting a segmentation fault. The maximum size for N in my system was 590
and the output screenshot of running the program with this value of N has shown in
the figure 10. As its clear from the figure, the execution time is 1.212002 seconds and
compared to the previous time its much bigger because we increase the size of the
matrix.

Figure 12: Screenshot of the output when the value of N is 590

(a) For the outer matrix multiplication loop

1- Source program listing: for this part I should add the necessary pragma to parallelize the
outer for loop. The below code shows the parallel version of the program.

#include <omp.h>
#include <stdio.h>
#include <stdlib.h>
#define N 590
#define CHUNKSIZE 10

int main(int argc, char *argv[]) {
 omp_set_num_threads(8);//set number of threads here
 int i, j, k, nthreads, tid, chunk;
 double sum;
 double start, end; // used for timing
 double A[N][N], B[N][N], C[N][N];

 chunk = CHUNKSIZE;

 for (i = 0; i < N; i++) {

 11

 for (j = 0; j < N; j++) {
 A[i][j] = j*1;
 B[i][j] = i*j+2;
 C[i][j] = j-i*2;
 }
 }

 start = omp_get_wtime(); //start time measurement
 #pragma omp parallel shared(A,B,C,nthreads) private(i,j,k,tid,sum)
 {
 tid = omp_get_thread_num();
 if (tid == 0)
 {
 nthreads = omp_get_num_threads();
 printf("Number of threads = %d\n", nthreads);
 }
 printf("Thread %d starting...\n",tid);

 #pragma omp for schedule(dynamic,chunk)
 for (i = 0; i < N; i++)
 {
 for (j = 0; j < N; j++)
 {
 sum = 0;
 for (k=0; k < N; k++)
 {
 sum += A[i][k]*B[k][j];
 }
 C[i][j] = sum;
 }
 }
 printf("Thread %d done.\n",tid);

 }

 end = omp_get_wtime(); //end time measurement
 printf("Time of computation: %f seconds\n", end-start);
 return(0);
}

2- One screenshot from compiling and running the program: The below figure shows
a screen shot from running the program for N = 590. As we can see in the figure, the
execution time is 0.828103 seconds while the runtime of the sequential version of
the program was 1.212002 seconds.

 12

Figure 13: Screenshot from running the program

3- Graphical results of the average timings: Figure 14 shows the screenshot of the
running the program for 1, 4, 8, and 16 threads.

Figure 14: Screenshot of running the program using 1, 4, 8, and 16 threads

Table 2 shows the results of the figure 14 in the form of table. As we can see in the
table 2, the average execution time of running the program using 1 thread is
1.4296441 seconds. Running the program using 1 thread means that we are running
it in serial. When we used 4 threads, the average execution time for 10 runs is
0.9299235 seconds; therefore, 4 Threads run the program faster than 1 thread. The
average execution time for 8 threads for 10 runs was 0.8291256 seconds, and it means
that 8 threads run the program faster than 4 threads. The average execution time of
running the program using 16 thread is 0.8226349 seconds, and this number is
roughly equal to the average running for 8 threads, and even for some runs, the
results of the 16 threads is worse than the results of the 8 threads. The reason is that

 13

we used the maximum parallelism of the program using 8 threads and 16 threads
dose not makes it better and even in some cases the context switching,
communication between threads, memory bound, and I/O bound makes the execution
time worse than when we have 8 threads.

Table 2: Results of the running the program using 1, 4, 8, and 16 threads

Run Number Execution Time (Seconds)
1 thread 4 threads 8 threads 16 threads

1 1.378122 0.878283 0.885928 0.928287
2 1.360951 0.868169 0.809751 0.831553
3 1.599916 0.930071 0.830719 0.808963
4 1.601839 0.887898 0.839334 0.820304
5 1.497168 0.845950 0.816654 0.808315
6 1.576870 0.887874 0.814974 0.816973
7 1.414737 1.087307 0.818318 0.805335
8 1.281233 0.980170 0.814377 0.802818
9 1.301636 1.020559 0.837740 0.800776

10 1.283969 0.912954 0.823461 0.803025
Average 1.4296441 0.9299235 0.8291256 0.8226349

Figure 15 shows the graphical results of the table 2. Using 1 thread means that we
run the program serially and we have the worse execution time. When we use 4
threads, the execution time is better compared to 1 thread. When we used 8 threads
the execution time is slightly better compared to 4 threads, but using 16 threads does

 14

not make it better because we reached the maximum parallelism of the program
using 8 threads.

Figure 15: Graphical results for the running the program using 1, 4, 8, and 16 threads

(b) For the middle matrix multiplication loop parallelized

1- Source program listing: for this part I should add the necessary pragma to parallelize the
middle for loop. The below code shows the parallel version of the program.

#include <omp.h>
#include <stdio.h>
#include <stdlib.h>
#define N 590
#define CHUNKSIZE 10

int main(int argc, char *argv[]) {
 omp_set_num_threads(8);//set number of threads here
 int i, j, k, nthreads, tid, chunk;
 double sum;
 double start, end; // used for timing
 double A[N][N], B[N][N], C[N][N];

 chunk = CHUNKSIZE;

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 2 3 4 5 6 7 8 9 10 Average

Ru
n

Ti
m

e
(S

ec
on

ds
)

Run Number

1 thread 4 threads 8 threads 16 threads

 15

 for (i = 0; i < N; i++) {
 for (j = 0; j < N; j++) {
 A[i][j] = j*1;
 B[i][j] = i*j+2;
 C[i][j] = j-i*2;
 }
 }

 start = omp_get_wtime(); //start time measurement
 for (i = 0; i < N; i++)
 {
 #pragma omp parallel shared(A,B,C,nthreads,i) private(j,k,tid,sum)
 {
 tid = omp_get_thread_num();
 if (tid == 0)
 {
 nthreads = omp_get_num_threads();
 //printf("Number of threads = %d\n", nthreads);
 }
 //printf("Thread %d starting...\n",tid);
 #pragma omp for schedule(dynamic,chunk)
 for (j = 0; j < N; j++)
 {
 sum = 0;
 for (k=0; k < N; k++)
 {
 sum += A[i][k]*B[k][j];
 }
 C[i][j] = sum;
 }
 //printf("Thread %d done.\n",tid);
 }
 }

 end = omp_get_wtime(); //end time measurement
 printf("Time of computation: %f seconds\n", end-start);
 return(0);
}

2- One screenshot from compiling and running the program: The below figure shows
a screen shot from running the program for N = 590. As we can see in the picture, the
runtime is 2.364118 seconds and it is bigger compare to the previous one. The reason
is that we only parallelized the middle loop, and for every iteration of the outer loop,
it will create 8 threads to calculate the outer loop in parallel. Therefore, we did not
use the maximum parallelism.

 16

Figure 16: Screenshot from running the program

3- Graphical results of the average timings: Figure 17 shows the screenshot of the
running the program for 1, 4, 8, and 16 threads.

 17

Figure 17: Screenshot of running the program using 1, 4, 8, and 16 threads

Table 3 shows the results of the figure 17 in the form of table. As we can see in the
table, the average run time for 1 thread is roughly equal to previous one because we
are running the program in serial in both cases. The average runtime for 4 threads
is the best and the reason is that using 4 threads we reached the maximum
parallelism for middle loop. When we increase the number of threads, the average
runtime becomes worser because we reached the maximum parallelism using 4
threads and increasing the number of threads only increase the overhead and context
switching between threads, make the execution time worser.

Table 3: Results of the running the program using 1, 4, 8, and 16 threads

Run Number Execution Time (Seconds)
1 thread 4 threads 8 threads 16 threads

1 1.386959 0.830258 0.873686 0.885983
2 1.573611 0.833889 0.848411 0.883812
3 1.448373 0.864349 0.861084 0.956182
4 1.521871 0.838649 0.846096 0.873152
5 2.010568 0.838524 0.845834 0.882266
6 1.491835 0.840875 0.843689 0.884270
7 1.449002 0.825657 0.847326 0.874695
8 1.637450 0.839492 0.845618 0.916051
9 1.395174 0.851926 0.846189 0.874034

10 1.420068 0.836555 0.856974 0.873254
Average 1.5334911 0.8400174 0.8514907 0.8903699

 18

Figure 18 shows the graphical results of the table 3.

Figure 18: Graphical results for the running the program using 1, 4, 8, and 16 threads

(c) Your conclusions and explanations of the results

Here is a list of conclusions about the results:

• For the outer matrix multiplication loop, when we have one thread, the average
run time is 1.4296441 seconds. It is like we run the program in serial because
just using one thread means that we run the program in serial. When we use
4 threads, the average execution time is 0.9299235 seconds. Using 4 threads
means that 4 threads is running the program in parallel and that is why we
had a spectacular improvement in average execution time with 4 threads
compared to 1 thread. The average execution time for 8 threads is 0.8291256
seconds. With 8 threads we had more parallelism compared to 4 threads and
that is the reason for getting better average execution time for 8 threads
compared to 4 threads. When we use 16 threads, the average execution time is
0.8226349 seconds and it is roughly the same as average execution time for 8
threads. Even in some cases the execution time for 16 threads is worse than
the execution time for 8 threads. The reason is that when we used 8 threads,
we reached the maximum parallelism and using 16 threads does not improve
it significantly and even in some cases the execution time is worser due to the
overhead of having more than needed threads and the context switching,

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 9 10 Average

Ru
n

Ti
m

e
(S

ec
on

ds
)

Run Number

1 thread 4 threads 8 threads 16 threads

 19

context switch between threads, communication between threads, memory
bound, and I/O bound make the execution time worser.

• For the middle matrix multiplication loop, the average execution time using 1
thread is 15334911 seconds and it is roughly equal to the average execution
time with 1 thread for outer loop matrix multiplication. The reason for that is
for both cases we are using only 1 thread for computation and using only 1
thread means that we are running the program in serial; therefore, both
average timing results are roughly the same. The average execution time for 4
threads is 0.8400174 seconds and as we expected, we had a significant
improvement compared to using 1 thread. For the middle loop parallelism, we
reached the maximum parallelism using 4 threads, and using 8 and 16 threads
dose not makes the run time better and even makes it worser. The average run
time using 8 threads is 0.8514907 seconds and it is slightly worser compared
to using 4 thread. The average run time for using 16 threads is 0.8903699
seconds and it is significantly worse than the average execution time for using
4 threads and the reason is that we already reached the maximum parallelism
with 4 threads and using 8 or 16 threads won’t improve it and even make it
worse due to overhead and context switch between threads, communication
between threads, memory bound, and I/O bound.

• When we parallelize the outer loop, we have a better parallelism compared to
only parallelizing the middle loop. When we only parallelize the middle, for
every iteration of the outer loop, it will create threads for running the middle
loop in parallel.

