
CS 213 — Multiprocessor Architecture and Programming

Instructor: Elaheh Sadredini
Programming Assignment 1 - OpenMP

Released: Feb 3
Due Date: Feb 13 - 11:59 PM
Last day to submit: Feb 18 - 11:59 PM (10% penalty per day)

1 Overview

The purpose of this part is to become familiar with OpenMP constructs and programs,
using your own computer. The assignment provides basic practice in coding, compiling
and running OpenMP programs, covering hello world program, timing, using work sharing
for, and sections directives. The OpenMP code is given. You are also asked to parallelize
matrix multiplication using the work sharing for directive and draw conclusions. Code
for sequential matrix multiplication is given.

1.1 ”hello world” program (20 points)

An OpenMP hello world program is given below:

#inc lude <omp . h>
#inc lude <s t d i o . h>
#inc lude <s t d l i b . h>

i n t main (i n t argc , char ∗argv []) {
i n t nthreads , t i d ;

// Fork a team of threads with t h e i r own c o p i e s o f v a r i a b l e s
#pragma omp p a r a l l e l p r i v a t e (nthreads , t i d)
{
t i d = omp get thread num () ; // Obtain thread number
p r i n t f (” He l lo World from thread = %d\n” , t i d) ;

i f (t i d == 0) { // Only master thread does t h i s
nthreads = omp get num threads () ;

p r i n t f (”Number o f threads = %d\n” , nthreads) ;
}

1

} // Al l threads j o i n master thread and disband
return (0) ;

}

This program has the basic parallel construct for defining a single parallel region for
multiple threads. It also has a private clause for defining a variable local to each thread.

Note: OpenMP constructs such as parallel have their opening braces on the next line
and not on the same line.

Compile the program on your own computer. Execute the program. Execute the pro-
gram at least four times. Explain your output. Why does the thread order change?

Alter the number of threads to 32. Here just try adding the following function before
the parallel region pragma. Re-execute the program.

omp set num threads (3 2) ;

What to Submit:

(a) (10 points) Screenshot from running the hello world program on your computer and
explanation of output and thread order.

(b) (10 points) Screenshots of the output from running the program with 32 threads
and explanation of what you have observed.

1.2 Work Sharing (20 points)

This task explores the use of the for work-sharing construct. The following program
adds two vectors together using a work-sharing approach to assign work to threads:

#inc lude <omp . h>
#inc lude <s t d i o . h>
#inc lude <s t d l i b . h>
#d e f i n e CHUNKSIZE 10
#d e f i n e N 100

i n t main (i n t argc , char ∗argv []) {
i n t nthreads , t id , i , chunk ;
f l o a t a [N] , b [N] , c [N] ;

f o r (i =0; i < N; i++)
a [i] = b [i] = i ∗ 1 . 0 ; // i n i t i a l i z e a r rays

2

chunk = CHUNKSIZE;

#pragma omp p a r a l l e l shared (a , b , c , nthreads , chunk) p r i va t e (i , t i d)
{

t i d = omp get thread num () ;
i f (t i d == 0){

nthreads = omp get num threads () ;
p r i n t f (”Number o f threads = %d\n” , nthreads) ;

}
p r i n t f (” Thread %d s t a r t i n g . . . \ n” , t i d) ;

#pragma omp f o r schedu le (dynamic , chunk)
f o r (i =0; i<N; i ++){

c [i] = a [i] + b [i] ;
p r i n t f (” Thread %d : c[%d]= %f \n” , t id , i , c [i]) ;

}
} /∗ end o f p a r a l l e l s e c t i o n ∗/
re turn (0) ;

}

This program has an overall parallel region within which there is a work-sharing for
construct. Compile and execute the program. Depending upon the scheduling of work
different threads might add elements of the vector. It may be that one thread does all
the work. Execute the program several times to see any different thread scheduling. In
the case that multiple threads are being used, observe how they may interleave.

Time of execution Measure the execution time by instrumenting the MPI code with
the OpenMP routine omp get wtime() at the beginning and end of the program and
finding the elapsed in time. The function omp get wtime() returns a double.

Experimenting with Scheduling Alter the code from dynamic scheduling to static
scheduling and repeat. What are your conclusions? Alter the code from static schedul-
ing to guided scheduling (chunk size is irrelevant) and repeat. What are your conclusions?

What to Submit:

(a) (5 points) A copy of the source program with timing added.

(b) (5 points) Screenshot from compiling and running the program with the original
dynamic scheduling.

(c) (5 points) Screenshots from running the program with static and with guided
scheduling

(d) (5 points) Your conclusions about the different scheduling approaches.

3

1.3 Work-sharing with the sections construct (20 points)

This task explores the use of the sections construction. The program below adds elements
of two vectors to form a third and also multiplies the elements of the arrays to produce
a fourth vector.

#inc lude <omp . h>
#inc lude <s t d i o . h>
#inc lude <s t d l i b . h>
#d e f i n e N 50

i n t main (i n t argc , char ∗argv []) {
i n t i , nthreads , t i d ;
f l o a t a [N] , b [N] , c [N] , d [N] ;

f o r (i =0; i<N; i++) { // Some i n i t i a l i z a t i o n s , a r b i t r a r y va lues
a [i] = i ∗ 1 . 5 ;
b [i] = i + 2 2 . 3 5 ;
c [i] = d [i] = 0 . 0 ;

}

#pragma omp p a r a l l e l shared (a , b , c , d , nthreads) p r i va t e (i , t i d)
{

t i d = omp get thread num () ;
i f (t i d == 0) {

nthreads = omp get num threads () ;
p r i n t f (”Number o f threads = %d\n” , nthreads) ;

}
p r i n t f (” Thread %d s t a r t i n g . . . \ n” , t i d) ;

#pragma omp s e c t i o n s nowait
{

#pragma omp s e c t i o n
{

p r i n t f (” Thread %d doing s e c t i o n 1\n” , t i d) ;
f o r (i =0; i<N; i++) {

c [i] = a [i] + b [i] ;
p r i n t f (” Thread %d : c[%d]= %f \n” , t id , i , c [i]) ;

}
}

#pragma omp s e c t i o n
{

4

p r i n t f (” Thread %d doing s e c t i o n 2\n” , t i d) ;
f o r (i =0; i<N; i++) {

d [i] = a [i] ∗ b [i] ;
p r i n t f (” Thread %d : d[%d]= %f \n” , t id , i , d [i]) ;

}
}

} // end o f s e c t i o n s

p r i n t f (” Thread %d done .\n” , t i d) ;

} // end o f p a r a l l e l s e c t i o n
re turn (0) ;

}

This program has a parallel region but now with variables declared as shared among
thethreads as well as private variables. Also there is a sections work sharing construct.
Within the sections construct, there are individual section blocks that are to be executed
once by one member of the team of threads.

Compile and execute the program and make conclusions on its execution.

What to Submit:

(a) (10 points) Screenshot from compiling and running the program.

(b) (10 points) Your conclusions.

1.4 Matrix Multiplication (40 points)

A sequential program for matrix multiplication given here:

#inc lude <omp . h>
#inc lude <s t d i o . h>
#inc lude <s t d l i b . h>
#d e f i n e N 100

i n t main (i n t argc , char ∗argv) {
omp set num threads (8) ; / / s e t number o f threads here
i n t i , j , k ;
double sum ;
double s ta r t , end ; // used f o r t iming
double A[N] [N] , B[N] [N] , C[N] [N] ;

f o r (i = 0 ; i < N; i++) {

5

f o r (j = 0 ; j < N; j++) {
A[i] [j] = j ∗1 ;
B[i] [j] = i ∗ j +2;
C[i] [j] = j−i ∗2 ;

}
}

s t a r t = omp get wtime () ; // s t a r t time measurement

f o r (i = 0 ; i < N; i++) {
f o r (j = 0 ; j < N; j++) {

sum = 0 ;
f o r (k=0; k < N; k++) {

sum += A[i] [k]∗B[k] [j] ;
}
C[i] [j] = sum ;

}
}

end = omp get wtime () ; //end time measurement
p r i n t f (”Time o f computation : %f seconds \n” , end−s t a r t) ;
r e turn (0) ;

}

The size of the N ×N matrices in the program is set to 100× 100. Change this to the
maximum size you can use on your system without getting a segmentation fault.

You are to parallelize this matrix multiplication program in two different ways:

• Add the necessary pragma to parallelize the outer for loop in the matrix multipli-
cation;

• Remove the pragma for the outer for loop and add the necessary pragma to paral-
lelize the middle for loop in the matrix multiplication;

In both cases, collect timing data with 1 thread, 4 threads, 8 threads, and 16 threads.
You will find that when you run the same program several times, the timing values can
vary significantly. Therefore add a loop in the code to execute the program 10 times and
display the average time.

What to Submit:

(a) For the outer matrix multiplication loop

• (5 points) Source program listing

• (5 points) One screenshot from compiling and running the program

• (5 points) Graphical results of the average timings

6

(b) For the middle matrix multiplication loop parallelized

• (5 points) Source program listing

• (5 points) One screenshot from compiling and running the program

• (5 points) Graphical results of the average timings

(c) (10 points) Your conclusions and explanations of the results.

2 Assignment Submission

Produce a single pdf document that shows that you successfully followed the instructions
and perform all tasks by taking screenshots and include these screenshots in the document.
Submit a single zip file for your pdf document and source codes. The name of zip file
should include your first and last name.

7

