
1

University of California, Riverside
Department of Computer Science & Engineering

Title: Advanced Computer Architecture Lab 3

Student Name:
Mahbod Afarin

Student ID:
862186340

Winter 2020

2

I	used	one	of	my	slip	days	for	this	lab	and	2	of	my	slip	days	for	lab2.	

Part	1:	How	to	run	the	program		

This	 program	 simulates	 direct	mapped,	 set	 associative,	 and	 fully	 associative	 caches.	 For	
running	the	program,	we	can	use	the	following	command:	

	

	

Which	cache	type	for	direct	mapped,	set	associative,	and	fully	associative	is	DM,	SA,	and	FA	
respectively.	For	example,	for	simulating	a	512KB	4-way	set	associative	cache	with	16B	block	
size	we	should	use	the	below	command.	

	

	

We	can	see	miss	rate,	hit	rate,	number	of	sets,	number	of	ways,	number	of	tag	bits,	number	
of	index	bits,	and	number	of	offset	bits	in	the	output.	For	example,	the	output	of	the	program	
for	512KB	4-way	set	associative	cache	with	16B	block	size	for	gcc-10K	is	in	the	following	
figure.		

Figure 1: Output of the cache program for gcc-10K – Set Associative

And	the	output	of	the	same	configuration	for	gcc-1M	is	in	the	following	figure.	
	

Figure 2: Output of the cache program for gcc-1M - Set Associative

In	the	following	figurers	we	can	see	the	results	for	the	same	configuration	for	direct	mapped	
cache.		

./cache-simulator	<input>	<cache	type>	<cache	size>	<block	size>	<#of	ways>	

./cache-simulator	gcc-10K.memtrace	SA	524288	16	4	

3

Figure 3: Output of the cache program for gcc-10K – Direct Mapped

Figure 4: Output of the cache program for gcc-1M – Direct Mapped

Part	2:	Questions	

1- Assuming a 512KB 4-way set associative cache with 16B block size, how many
bits does the tag have? What is the total size, in bytes, of the cache including tag
bits?

Answer:

𝑏	(𝑏𝑙𝑜𝑐𝑘	𝑠𝑖𝑧𝑒	𝑖𝑛	𝑏𝑦𝑡𝑒) = 16𝐵
𝑛	(𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑤𝑎𝑦𝑠) = 4
𝑚	(𝑠𝑖𝑧𝑒	𝑜𝑓	𝑡ℎ𝑒	𝑐𝑎𝑐ℎ𝑒	𝑖𝑛	𝑏𝑙𝑜𝑐𝑘𝑠) =

512𝐾𝐵
16𝐵 = 32𝐾

𝑠	(𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑠𝑒𝑡𝑠) =
𝑚
𝑛 =

32𝐾
4 = 8𝐾

𝑜𝑓𝑓𝑠𝑒𝑡 = logD 𝑏 = logD 16 = 4
𝐼𝑛𝑑𝑒𝑥 = logD 𝑠 = logD 2

HI = 13
𝑇𝑎𝑔 = 32 − 𝑜𝑓𝑓𝑠𝑒𝑡 − 𝑖𝑛𝑑𝑒𝑥 = 32 − 4 − 13 = 15
𝐶𝑎𝑐ℎ𝑒	𝑆𝑖𝑧𝑒 = 𝑠 × 𝑛 × 𝑏 = 8𝐾 × 4 × (16 × 8 + 15 + 1) = 4718592𝑏𝑖𝑡𝑠 = 576𝐾𝐵𝑦𝑡𝑒𝑠

2- What is the cache miss rate of the given traces and cache configuration? Assume
we have a 512KB cache and 16B block size.

Answer:

Trace	 Direct	 2-way	 4-way	 Fully	Associative	

gcc-10K	 0.0762	 0.0756	 0.0756	 0.0756	

gcc-1M	 0.012424078	 0.0093852447	 0.0092303748	 0.0092316762	

3-	For	the	following	configurations,	how	many	bits	are	for	tag,	index,	and	offset	fields?	
Assume	we	have	a	256KB	cache	and	16B	block	size.		

4

Answer:	

Trace Direct 2-way 4-way Fully Associative

gcc-10K
𝑜𝑓𝑓𝑠𝑒𝑡 = 4	𝑏𝑖𝑡𝑠
𝑖𝑛𝑑𝑒𝑥 = 14	𝑏𝑖𝑡𝑠
𝑡𝑎𝑔 = 14	𝑏𝑖𝑡𝑠	

𝑜𝑓𝑓𝑠𝑒𝑡 = 4	𝑏𝑖𝑡𝑠
𝑖𝑛𝑑𝑒𝑥 = 13	𝑏𝑖𝑡𝑠
𝑡𝑎𝑔 = 15	𝑏𝑖𝑡𝑠

𝑜𝑓𝑓𝑠𝑒𝑡 = 4	𝑏𝑖𝑡𝑠
𝑖𝑛𝑑𝑒𝑥 = 12	𝑏𝑖𝑡𝑠
𝑡𝑎𝑔 = 16	𝑏𝑖𝑡𝑠

𝑜𝑓𝑓𝑠𝑒𝑡 = 4	𝑏𝑖𝑡𝑠
𝑖𝑛𝑑𝑒𝑥 = 0	𝑏𝑖𝑡𝑠
𝑡𝑎𝑔 = 28	𝑏𝑖𝑡𝑠

gcc-1M

𝑜𝑓𝑓𝑠𝑒𝑡 = 4	𝑏𝑖𝑡𝑠
𝑖𝑛𝑑𝑒𝑥 = 14	𝑏𝑖𝑡𝑠
𝑡𝑎𝑔 = 14	𝑏𝑖𝑡𝑠

𝑜𝑓𝑓𝑠𝑒𝑡 = 4	𝑏𝑖𝑡𝑠
𝑖𝑛𝑑𝑒𝑥 = 13	𝑏𝑖𝑡𝑠
𝑡𝑎𝑔 = 15	𝑏𝑖𝑡𝑠

𝑜𝑓𝑓𝑠𝑒𝑡 = 4	𝑏𝑖𝑡𝑠
𝑖𝑛𝑑𝑒𝑥 = 12	𝑏𝑖𝑡𝑠
𝑡𝑎𝑔 = 16	𝑏𝑖𝑡𝑠

𝑜𝑓𝑓𝑠𝑒𝑡 = 4	𝑏𝑖𝑡𝑠
𝑖𝑛𝑑𝑒𝑥 = 0	𝑏𝑖𝑡𝑠
𝑡𝑎𝑔 = 28	𝑏𝑖𝑡𝑠

Calculations for Direct:

𝑏	(𝑏𝑙𝑜𝑐𝑘	𝑠𝑖𝑧𝑒	𝑖𝑛	𝑏𝑦𝑡𝑒) = 16𝐵
𝑛	(𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑤𝑎𝑦𝑠) = 1
𝑚	(𝑠𝑖𝑧𝑒	𝑜𝑓	𝑡ℎ𝑒	𝑐𝑎𝑐ℎ𝑒	𝑖𝑛	𝑏𝑙𝑜𝑐𝑘𝑠) =

256𝐾𝐵
16𝐵 = 16𝐾

𝑠	(𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑠𝑒𝑡𝑠) =
𝑚
𝑛 =

16𝐾
1 = 16𝐾

𝑜𝑓𝑓𝑠𝑒𝑡 = logD 𝑏 = logD 16 = 4	𝑏𝑖𝑡𝑠
𝑖𝑛𝑑𝑒𝑥 = logD 𝑠 = logD 2

HT = 14	𝑏𝑖𝑡𝑠
𝑡𝑎𝑔 = 32 − 14 − 4 = 14	𝑏𝑖𝑡𝑠

Calculations for 2-way:

𝑏	(𝑏𝑙𝑜𝑐𝑘	𝑠𝑖𝑧𝑒	𝑖𝑛	𝑏𝑦𝑡𝑒) = 16𝐵
𝑛	(𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑤𝑎𝑦𝑠) = 2
𝑚	(𝑠𝑖𝑧𝑒	𝑜𝑓	𝑡ℎ𝑒	𝑐𝑎𝑐ℎ𝑒	𝑖𝑛	𝑏𝑙𝑜𝑐𝑘𝑠) =

256𝐾𝐵
16𝐵 = 16𝐾

𝑠	(𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑠𝑒𝑡𝑠) =
𝑚
𝑛 =

16𝐾
2 = 8𝐾

𝑜𝑓𝑓𝑠𝑒𝑡 = logD 𝑏 = logD 16 = 4	𝑏𝑖𝑡𝑠
𝑖𝑛𝑑𝑒𝑥 = logD 𝑠 = logD 2

HI = 13	𝑏𝑖𝑡𝑠
𝑡𝑎𝑔 = 32 − 14 − 4 = 15	𝑏𝑖𝑡𝑠

Calculations for 4-way:

𝑏	(𝑏𝑙𝑜𝑐𝑘	𝑠𝑖𝑧𝑒	𝑖𝑛	𝑏𝑦𝑡𝑒) = 16𝐵
𝑛	(𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑤𝑎𝑦𝑠) = 4
𝑚	(𝑠𝑖𝑧𝑒	𝑜𝑓	𝑡ℎ𝑒	𝑐𝑎𝑐ℎ𝑒	𝑖𝑛	𝑏𝑙𝑜𝑐𝑘𝑠) =

256𝐾𝐵
16𝐵 = 16𝐾

𝑠	(𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑠𝑒𝑡𝑠) =
𝑚
𝑛 =

16𝐾
4 = 4𝐾

𝑜𝑓𝑓𝑠𝑒𝑡 = logD 𝑏 = logD 16 = 4	𝑏𝑖𝑡𝑠
𝑖𝑛𝑑𝑒𝑥 = logD 𝑠 = logD 2

HD = 12	𝑏𝑖𝑡𝑠

5

𝑡𝑎𝑔 = 32 − 14 − 4 = 16	𝑏𝑖𝑡𝑠

Calculations for Fully-Associative:

𝑏	(𝑏𝑙𝑜𝑐𝑘	𝑠𝑖𝑧𝑒	𝑖𝑛	𝑏𝑦𝑡𝑒) = 16𝐵
𝑜𝑓𝑓𝑠𝑒𝑡 = logD 𝑏 = logD 16 = 4	𝑏𝑖𝑡𝑠
𝑖𝑛𝑑𝑒𝑥 = 0	𝑏𝑖𝑡
𝑡𝑎𝑔 = 32 − 4 = 28	𝑏𝑖𝑡𝑠

4-	Assuming	a	256KB	cache	and	32B	block	size.	How	does	increasing	the	number	of	
ways	affect	cache	miss	rate?	Plot	the	number	of	ways	(1,2,4,8,16)	vs	miss	rate	for	the	
two	traces.	What	do	you	observe	and	why?		

Answer:	As	we	 see	 in	 the	 following	 chart,	 the	miss	 rate	 decrease	when	we	 increase	 the	
number	of	ways;	because	in	this	way,	we	increased	the	associativity	of	the	cache	and	it	led	
to	reducing	conflict	misses.	So,	we	improved	the	miss	rate	by	reducing	the	conflict	misses.	
For	the	10K	trace	it	remains	constant	after	2-way	because	our	benchmark	is	small	and	we	
have	compulsory	misses	which	increasing	the	number	of	ways	cannot	eliminate	that.		

	

Figure 5: Miss rate vs number of ways

Trace	 1-way	 2-way	 4-way	 8-way	 16-way	
10K	 0.049	 0.0479	 0.0479	 0.0479	 0.0479	
1M	 0.00923363	 0.00599568	 0.00552131	 0.00550894	 0.00550309	

0

0.01

0.02

0.03

0.04

0.05

0.06

1-way 2-way 4-way 8-way 16-way

Miss rate vs. number of ways

10K 1M

6

5-	Assuming	a	256KB	2-way	set	associative	cache.	How	does	varying	the	size	of	the	
block	affect	cache	miss	rate?	Plot	the	block	size	(2B,	4B,	8B,	16B,	32B,	64B)	vs	miss	
rate	for	the	two	traces.	What	do	you	observe	and	why?		

Answer:	As	we	see	in	the	following	chart,	the	miss	rate	decrease	when	we	increase	block	
size	 because	 of	 the	 special	 locality.	 Special	 locality	 says	 that	 if	 something	 is	 accessed,	
something	 nearby	 will	 probability	 be	 accessed.	 We	 will	 increase	 the	 locality	 when	 we	
increase	the	block	size	because	we	transfer	larger	blocks	to	the	cache	and	in	this	way,	our	
miss	rate	will	decrease	because	of	increasing	the	special	locality.	But	larger	block	size	can	
increase	miss	penalty	because	generally	it	reduces	the	number	of	the	total	blocks	in	cache.	

Figure 6: Miss rate vs. number of blocks

Trace	 2B	 4B	 8B	 16B	 32B	 64B	
10K	 0.1096	 0.1084	 0.107	 0.0756	 0.0479	 0.0314	
1M	 0.01334028	 0.01327586	 0.01270584	 0.00992729	 0.00599568	 0.00349694	

6-	Assuming	a	2-way	set	associative	cache	and	32B	block	size.	How	does	varying	the	
size	of	the	cache	affect	cache	miss	rate?	Plot	the	cache	size	(64K,	128K,	256K,	512K,	
1M,	2M)	vs	miss	rate	for	the	two	traces.	What	do	you	observe	and	why?		

Answer:	As	we	see	in	the	following	chart,	the	miss	rate	decrease	when	we	increase	cache	
size	because	we	increase	the	number	of	blocks	in	the	cache.	For	the	10K	trace	it	remains	
constant	after	128K	because	our	benchmark	is	small	and	we	have	compulsory	misses	which	
increasing	the	cache	size	cannot	eliminate	that.		

0

0.02

0.04

0.06

0.08

0.1

0.12

2B 4B 8B 16B 32B 64B

Miss rate vs. size of blocks

10K 1M

7

Figure 7: Miss rate vs. cache size

Trace	 64K	 128K	 256K	 512K	 1M	 2M	
10K	 0.0495	 0.0479	 0.0479	 0.0479	 0.0479	 0.0479	
1M	 0.0479	 0.00730621	 0.00599568	 0.00561696	 0.0055187	 0.00550113	

7-	Measuring	cold,	capacity,	and	conflict	misses.	(See	“Measuring/Classifying	Misses”	
in	slides).	In	this	problem,	we	will	identify	the	types	of	misses	for	an	8KB,	4-way	set	
associative	cache	with	block	size	of	32B.	For	the	gcc-1M	trace,	provide	a	breakdown	of	
the	type	of	cache	misses.	You	can	provide	the	breakdown	in	terms	of	the	miss	rate.	For	
example,	if	the	8KB,	4-way	cache	has	a	20%	miss	rate,	an	infinite	size	cache	have	a	1%	
miss	rate,	and	a	fully	associative	cache	have	a	10%	miss	rate,	then	1%	is	due	to	cold	
misses,	9%	is	due	to	capacity	misses,	and	10%	is	due	to	conflict	misses.		

Answer:	

𝑀𝑖𝑠𝑠	𝑟𝑎𝑡𝑒	𝑓𝑜𝑟	8𝐾𝐵, 4	𝑤𝑎𝑦	𝑠𝑒𝑡	𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑣𝑒	𝑐𝑎𝑐ℎ𝑒	 = 	0.04985053104	 = 	4.985053104%	

𝑀𝑖𝑠𝑠	𝑟𝑎𝑡𝑒	𝑓𝑜𝑟	𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒	𝑠𝑖𝑧𝑒	𝑐𝑎𝑐ℎ𝑒	 = 	0.00550113419	 = 	0.550113419%	

𝑀𝑖𝑠𝑠	𝑟𝑎𝑡𝑒	𝑓𝑜𝑟	𝑓𝑢𝑙𝑙𝑦	𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑣𝑒	 = 	0.0445368	 = 	4.45368%	

So,	we	have:	

𝐶𝑜𝑚𝑝𝑢𝑙𝑠𝑜𝑟𝑦	𝑚𝑖𝑠𝑠𝑒𝑠	 = 	0.550113419%	

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦	𝑚𝑖𝑠𝑠𝑒𝑠	 = 	4.45368	 − 	0.550113419	 = 	3.903566581%	

𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡	𝑚𝑖𝑠𝑠𝑒𝑠	 = 	4.985053104	 − 	3.903566581	 − 	0.550113419	 = 	0.531373104%	

0

0.01

0.02

0.03

0.04

0.05

0.06

64K 128K 256K 512K 1M 2M

Miss rate vs. cache size

10K 1M

