
Page 1

University of California, Riverside

Department of Computer Science and Engineering

Title: Lab 1 Report

Course: Advanced Computer Architecture

Student Name: Mahbod Afarin

Student Number: 862186340

January 2020

Page 2

1- Implementing forwarding

First, I implemented forwarding in the Pipesim. In the below piece of code, I showed the

changes in Pipesim for implementing forwarding. I added forwarding in the pipeline.cpp. The

whole code is attached to this report and also it is on the appendix of this report.

Figure 1: Implementing forwarding.

In the following pictures I showed the results of the execution of instruction.txt,

instruction2.txt, and instruction3.txt without forwarding. The clock cycles for the

instruction.txt, instruction2.txt, and instruction3.txt is 18, 23, and 16 respectively.

Figure 2: The result of the instruction.txt without forwarding

Page 3

Figure 3: The result of the instruction2.txt without forwarding

Figure 4: The result of the instruction3.txt without forwarding.

Page 4

In the following pictures I showed the results of the instruction.txt, instruction2.txt, and

instruction3.txt with forwarding. The clock cycles in forwarding mood for the instruction.txt,

instruction2.txt, and instruction3.txt is 12, 16, and 11 respectively.

Figure 5: The result of the instruction.txt with forwarding.

Figure 6: The result of the instruction2.txt with forwarding.

Page 5

Figure 7: The result of the instruction3.txt with forwarding.

2- Questions

2-1- Identify and classify all hazards that exist in instruction.txt and instruction2.txt.

First, I am going to identify the hazards of instraction.txt.

ADD r1 r2 r3 R1  r2 + r3

SUB r2 r3 r4 R2  r3 + r4

MULT r3 r1 r5 R3  r1 * r5

DIV r4 r3 r6 R4  r3 / r6

LW r5 r4 R5  mem [r4]

SW r5 r7 Mem [r7]  r5

BNEZ r7 r8 If (r7 != r8) go to [address]

1- Data Hazards:

1- Read After Write (RAW) between ADD and MULT instructions in r1 register.

ADD r1 r2 r3

MULT r3 r1 r5

2- Read After Write (RAW) between MULT and DIV instructions in r3 register.

MULT r3 r1 r5

DIV r4 r3 r6

3- Read After Write (RAW) between DIV and LW instructions in r4 register.

DIV r4 r3 r6

LW r5 r4

Page 6

4- Read After Write (RAW) between LW and SW instructions in r5 register.

LW r5 r4

SW r5 r7

5- Write After Read (WAR) between ADD and SUB instructions in r2 register. WAR is

not a true dependency in pipeline and it is anti-dependency.

ADD r1 r2 r3

SUB r2 r3 r4

6- Write After Read (WAR) between SUB and MULT instructions in r3 register. WAR is

not a true dependency in pipeline and it is anti-dependency.

SUB r2 r3 r4

MULT r3 r1 r5

2- Structural Hazards:

In this example our instruction cache and data cache are separate, so we have not structural

hazard. Structural hazard happens when we have conflict for use of a resource. In five stage

pipeline we need to access to the same cache in instruction fetch stage and memory stage, if

we don’t separate these two caches.

3- Control Hazard:

Control hazard occurs when we have a branch instruction because fetching next instruction

depends on a branch outcome. In this example if we have instructions after the BNEZ r7 r8,

we faced control hazard. So, We have not control hazard because we have not any instructions

after BNEZ r7 r8.

Second, I am going to identify the hazards of instraction2.txt.

ADD r1 r2 r3 r1  r2 + r3

SW r1 r2 mem [r2]  r1

LW r7 r2 r7  mem [r2]

ADD r5 r7 r1 r5  r7 + r1

LW r8 r2 r8  mem [r2]

SW r7 r8 mem [r8]  r7

ADD r8 r8 r2 r8  r8 + r2

LW r9 r8 r9  mem [r8]

SW r9 r8 r8  mem [r9]

Page 7

1- Data Hazards:

1- Read After Write (RAW) hazard between ADD and SW instructions in r1 register.

ADD r1 r2 r3

SW r1 r2

2- Read After Write (RAW) hazard between LW and ADD instructions in r7 register.

LW r7 r2

ADD r5 r7 r1

3- Read After Write (RAW) hazard between LW and SW instructions in r8 register.

LW r8 r2

SW r7 r8

4- Read After Write (RAW) hazard between ADD and LW instructions in r8 register.

ADD r8 r8 r2

LW r9 r8

5- Read After Write (RAW) hazard between LW and SW instructions in r9 register.

LW r9 r8

SW r9 r8

6- Read After Write (RAW) hazard between LW and ADD instructions in r8 register.

LW r8 r2

ADD r8 r8 r2

7- Write After Read (WAR) hazard between SW and ADD instructions in r8 register. WAR

is not a true dependency in pipeline and it is anti-dependency.

SW r7 r8

ADD r8 r8 r2

8- Write After Read (WAR) hazard between LW and SW instructions in r8 register. WAR

is not a true dependency in pipeline and it is anti-dependency.

LW r9 r8

SW r9 r8

2- Structural Hazards:

In this example our instruction cache and data cache are separate, so we have not structural

hazard. Structural hazard happens when we have conflict for use of a resource. In five stage

pipeline we need to access to the same cache in instruction fetch stage and memory stage, if

we don’t separate these two caches.

3- Control Hazard:

Page 8

We don’t have control hazard in this example.

2-2- What is the CPI for instruction.txt and instruction2.txt with no forwarding? What is

the CPI with forwarding?

What is the speedup for instruction.txt and instruction2.txt when using full forwarding?

CPI for instruction.txt with no forwarding:

𝐶𝑃𝐼 =
𝐶𝑙𝑜𝑐𝑘 𝐶𝑦𝑐𝑙𝑒𝑠

𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠
=

18

7
= 2.57142

CPI for instruction2.txt with no forwarding:

𝐶𝑃𝐼 =
𝐶𝑙𝑜𝑐𝑘 𝐶𝑦𝑐𝑙𝑒𝑠

𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠
=

23

9
= 2.55555

CPI for instruction.txt with forwarding:

𝐶𝑃𝐼 =
𝐶𝑙𝑜𝑐𝑘 𝐶𝑦𝑐𝑙𝑒𝑠

𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠
=

12

7
= 1.71428

CPI for instruction2.txt with forwarding:

𝐶𝑃𝐼 =
𝐶𝑙𝑜𝑐𝑘 𝐶𝑦𝑐𝑙𝑒𝑠

𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠
=

16

9
= 1.77777

Speedup for instraction.txt:

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒(𝑛𝑜 𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑖𝑛𝑔)

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒(𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑖𝑛𝑔)
=

2.57142

1.71428
= 1.5

Speedup for instraction2.txt:

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒(𝑛𝑜 𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑖𝑛𝑔)

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒(𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑖𝑛𝑔)
=

2.55555

1.77777
= 1.4375

2-3- Using a pipeline without forwarding, reorder the instructions in instruction2.txt to

minimize the number of stalls. Show the new reordered instruction trace and

calculate the speedup compared to the original instruction trace.

With the below order of instruction, we can have 16 cycles instead of 23 instructions.

LW r8 r2

LW r7 r2

ADD r1 r2 r3

SW r7 r8

ADD r8 r8 r2

SW r1 r2

ADD r5 r7 r1

LW r9 r8

SW r9 r8

Page 9

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 (𝑜𝑙𝑑)

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 (𝑛𝑒𝑤)
=

23

16
= 1.4375

The following picture show the result of the reordering trace execution.

Figure 8: The result of the reordering trace

2-4- Would CPI improve from doubling the processor frequency? Why or why not? How can

you further improve the CPI of a processor?

𝐶𝑃𝐼 =
𝐶𝑙𝑜𝑐𝑘 𝐶𝑦𝑐𝑙𝑒𝑠

𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠

Base on the above formula, doubling the processor frequency will not improve the CPI

because doubling the performance frequency just reduces the cycle time and has not any

effects on the number of the cycles of a program.

For improving CPI, we should reduce clock cycles. With minimizing the number of stalls, we

can reduce clock cycles. With techniques like forwarding or out of order execution, we can

reduce the number of the stalls and as a result, we can improve the CPI. Another way to

improve CPI is using wide pipeline or multiple pipeline.

2-5- Assuming a program has 30% of instructions that uses the ALU, and we developed a

technique to speedup ALU instructions, what is the maximum speedup that we can achieve?

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑇

𝑇𝑒
=

𝑇

𝑇[(1 − 𝑓) +
𝑓
𝑠]

=
1

[(1 − 𝑓) +
𝑓
𝑠]

=
1

[(1 − 0.3) +
0.3
𝑠]

Page 10

𝑊𝑒 ℎ𝑎𝑣𝑒 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑠𝑝𝑒𝑒𝑑𝑢𝑝 𝑤ℎ𝑒𝑛 𝑠 → ∞ , 𝑠𝑜
0.3

𝑠
→ 0

𝑺𝒑𝒆𝒆𝒅𝒖𝒑 =
𝟏

𝟏 − 𝟎. 𝟑
= 𝟏. 𝟒𝟐𝟖𝟓𝟕

2-6- If 75% of a program can be done in parallel, given the same execution time what is the

speedup of a machine with 4 cores vs a machine with 1 core?

𝑺𝒑𝒆𝒆𝒅𝒖𝒑 =
𝒔 + 𝒑𝑪

𝒔 + 𝒑
= 𝟏 − 𝒇 + 𝒇𝑪 = 𝟏 + 𝒇(𝑪 − 𝟏) = 𝟏 + 𝟎. 𝟕𝟓 × (𝟒 − 𝟏) = 𝟑. 𝟐𝟓

3- Appendix

The pipesim with forwarding feature are available here.

Main.cpp

#include <iostream>

#include "unistd.h"

#include "pipeline.h"

#include <stdlib.h>

#include <stdio.h>

using namespace std;

int main(int argc, char *argv[])

{

 int opt;

 bool forwarding = false;

 string fileName = "instruction.txt";

 while ((opt = getopt(argc, argv, "fi:")) != EOF)

 switch (opt)

 {

 case 'f':

 forwarding = true;

 break;

 case 'i':

 fileName.assign(optarg);

 break;

 case '?':

 fprintf(stderr, "usuage is \n -i fileName : to run input file fileName \n -f : for enabling

forwarding ");

 default:

 cout << endl;

 abort();

 }

Page 11

 cout << "Loading application..." << fileName << endl;

 Application application;

 application.loadApplication(fileName);

 cout << "Initializing pipeline..." << endl;

 Pipeline pipeline(&application);

 pipeline.forwarding = forwarding;

 do

 {

 pipeline.cycle();

 pipeline.printPipeline();

 } while (!pipeline.done());

 cout << "Completed in " << pipeline.cycleTime - 1 << " cycles" << endl;

 return 0;

}

Pipeline.cpp

#include "pipeline.h"

#include <iostream>

#include <fstream>

#include <sstream>

#include <stdlib.h>

Register registerFile[16];

Register::Register(void)

{

 dataValue = 0;

 registerNumber = -1;

 registerName = "";

}

Instruction::Instruction(void)

{

 type = NOP;

 dest = -1;

 src1 = -1;

 src2 = -1;

 stage = NONE;

}

Instruction::Instruction(std::string newInst)

{

 std::string buf;

 std::stringstream ss(newInst);

 std::vector<std::string> tokens;

 while (ss >> buf)

Page 12

 {

 tokens.push_back(buf);

 }

 if (tokens[0] == "ADD")

 type = ADD;

 else if (tokens[0] == "SUB")

 type = SUB;

 else if (tokens[0] == "MULT")

 type = MULT;

 else if (tokens[0] == "DIV")

 type = DIV;

 else if (tokens[0] == "LW")

 type = LW;

 else if (tokens[0] == "SW")

 type = SW;

 else if (tokens[0] == "BNEZ")

 type = BNEZ;

 else

 type = NOP;

 dest = -1;

 src1 = -1;

 src2 = -1;

 if (tokens.size() > 1)

 {

 dest = atoi(tokens[1].erase(0, 1).c_str());

 }

 if (tokens.size() > 2)

 {

 src1 = atoi(tokens[2].erase(0, 1).c_str());

 }

 if (tokens.size() > 3)

 {

 src2 = atoi(tokens[3].erase(0, 1).c_str());

 }

 // Store and BNEZ has 2 source operands and no destination operand

 if (type == SW || type == BNEZ)

 {

 src2 = src1;

 src1 = dest;

 dest = -1;

 }

 stage = NONE;

}

Application::Application(void)

{

 PC = 0;

}

void Application::loadApplication(std::string fileName)

{

 std::string sLine = "";

Page 13

 Instruction *newInstruction;

 std::ifstream infile;

 infile.open(fileName.c_str(), std::ifstream::in);

 if (!infile)

 {

 std::cout << "Failed to open file " << fileName << std::endl;

 return;

 }

 while (!infile.eof())

 {

 getline(infile, sLine);

 if (sLine.empty())

 break;

 newInstruction = new Instruction(sLine);

 instructions.push_back(newInstruction);

 }

 infile.close();

 std::cout << "Read file completed!!" << std::endl;

 printApplication();

}

void Application::printApplication(void)

{

 std::cout << "Printing Application: " << std::endl;

 std::vector<Instruction *>::iterator it;

 for (it = instructions.begin(); it < instructions.end(); it++)

 {

 (*it)->printInstruction();

 std::cout << std::endl;

 }

}

Instruction *Application::getNextInstruction()

{

 Instruction *nextInst = NULL;

 if (PC < instructions.size())

 {

 nextInst = instructions[PC];

 PC += 1;

 }

 if (nextInst == NULL)

 nextInst = new Instruction();

 return nextInst;

}

PipelineStage::PipelineStage(void)

{

 inst = new Instruction();

 stageType = NONE;

Page 14

}

void PipelineStage::clear()

{

 inst = NULL;

}

void PipelineStage::process()

{

 // Functionally simulate pipeline stage

 // Since this simulator only models timing, this function currently does nothing

 switch (stageType)

 {

 case FETCH: // Fetch instruction. PC+4

 break;

 case DECODE: // Fetch register operands

 break;

 case EXEC: // Perform ALU operations

 break;

 case MEM: // Load/Store from/to memory

 break;

 case WB: // Writeback result operand to register

 break;

 default:

 break;

 }

}

void PipelineStage::addInstruction(Instruction *newInst)

{

 inst = newInst;

 inst->stage = stageType;

}

Pipeline::Pipeline(Application *app)

{

 pipeline[FETCH].stageType = FETCH;

 pipeline[DECODE].stageType = DECODE;

 pipeline[EXEC].stageType = EXEC;

 pipeline[MEM].stageType = MEM;

 pipeline[WB].stageType = WB;

 cycleTime = 0;

 printPipeline();

 application = app;

 forwarding = false;

}

bool Pipeline::hasDependency(void)

{

 if (forwarding) //adding forwading

 {

 if (pipeline[DECODE].inst->type == NOP)

Page 15

 return false;

 for (int i = EXEC; i < WB; i++)

 {

 if (pipeline[i].inst == NULL)

 continue;

 if (pipeline[i].inst->type == NOP)

 continue;

 if (pipeline[EXEC].inst->type == LW)

 {

 if ((pipeline[i].inst->dest != -1) &&

 (pipeline[i].inst->dest == pipeline[DECODE].inst->src1 ||

 pipeline[i].inst->dest == pipeline[DECODE].inst->src2))

 {

 return true;

 }

 }

 }

 return false;

 }

 else

 {

 if (pipeline[DECODE].inst->type == NOP)

 return false;

 // Checks if dependency exist between Decode stage and Exec, Mem stage

 // We assume the register file can read/write in the same cycle so no data dependency exist with

RAW dependency if an instruction is in Decode and WB.

 for (int i = EXEC; i < WB; i++)

 {

 if (pipeline[i].inst == NULL)

 continue;

 if (pipeline[i].inst->type == NOP)

 continue;

 if ((pipeline[i].inst->dest != -1) &&

 (pipeline[i].inst->dest == pipeline[DECODE].inst->src1 ||

 pipeline[i].inst->dest == pipeline[DECODE].inst->src2))

 {

 return true;

 }

 }

 return false;

 }

}

void Pipeline::cycle(void)

{

 cycleTime += 1;

 // Check for data hazards

Page 16

 // NOTE: Technically, data hazards are detected in the Decode stage. If a data hazard is detected, at the

end of the cycle we write 0's (NOP) to the pipeline register so that a NOP will be generated in the EXEC stage in

the next cycle.

 // Doing the check here does a dependency check on the instructions in the previous cycle (we haven't

advanced the instructions in the pipeline yet). If a dependency exist in the previous cycle, we stall the pipeline in

this cycle.

 bool dependencyDetected = hasDependency();

 // WRITEBACK STAGE

 // Mem -> WB Pipeline register

 pipeline[WB].addInstruction(pipeline[MEM].inst);

 // Writeback

 pipeline[WB].process();

 // MEM STAGE

 // Exec -> Mem Pipeline register

 pipeline[MEM].addInstruction(pipeline[EXEC].inst);

 // Mem

 pipeline[MEM].process();

 // EXEC STAGE

 // Decode -> Exec Pipeline register

 // If dependency detected, stall by inserting NOP instruction

 if (!dependencyDetected)

 pipeline[EXEC].addInstruction(pipeline[DECODE].inst);

 else

 pipeline[EXEC].addInstruction(new Instruction());

 // Exec

 pipeline[EXEC].process();

 // DECODE STAGE

 // Fetch -> Decode Pipeline register

 if (!dependencyDetected)

 pipeline[DECODE].addInstruction(pipeline[FETCH].inst);

 // Decode

 pipeline[DECODE].process();

 // FETCH STAGE

 // Fetch

 if (!dependencyDetected)

 {

 pipeline[FETCH].addInstruction(application->getNextInstruction());

 pipeline[FETCH].process();

 }

}

bool Pipeline::done()

{

 for (int i = 0; i < 5; i++)

 {

 if (pipeline[i].inst->type != NOP)

 return false;

 }

Page 17

 return true;

}

void Pipeline::printPipeline(void)

{

 if (cycleTime == 0)

 std::cout << "Cycle"

 << "\tIF"

 << "\t\tID"

 << "\t\tEXEC"

 << "\t\tMEM"

 << "\t\tWB" << std::endl;

 std::cout << cycleTime;

 for (int i = 0; i < 5; i++)

 {

 pipeline[i].printStage();

 }

 std::cout << std::endl;

}

void PipelineStage::printStage(void)

{

 std::cout << "\t";

 inst->printInstruction();

}

void Instruction::printInstruction(void)

{

 if (type == NOP)

 std::cout << instructionNames[type] << " ";

 else if (type == SW || type == BNEZ)

 std::cout << instructionNames[type] << " r" << src1 << " r" << src2;

 else if (type == LW)

 std::cout << instructionNames[type] << " r" << dest << " r" << src1;

 else

 std::cout << instructionNames[type] << " r" << dest << " r" << src1 << " r" << src2;

}

Pipeline.h

#include <string>

#include <vector>

/* Types of possible instruction types */

enum InstructionType {

 NOP = 0, // NOP. Pipeline bubble.

 ADD, // Add

 SUB, // Subtract

 MULT, // Multiply

 DIV, // Divide

 LW, // Load word

 SW, // Store word

 BNEZ // Branch not equal to zero

Page 18

};

/* Names of possible instruction types */

const std::string instructionNames[8] = {"*", "ADD", "SUB", "MULT", "DIV", "LW", "SW", "BNEZ"};

enum Stage {

 FETCH = 0,

 DECODE,

 EXEC,

 MEM,

 WB,

 NONE

};

const std::string stageNames[6] = {"FETCH", "DECODE", "EXEC", "MEM", "WB", "NONE"};

/* A Single Register Entry containing register number and register data value */

class Register {

 public:

 Register();

 int dataValue;

 int registerNumber;

 std::string registerName;

};

/* Register file with 16 registers */

extern Register registerFile[16];

class Instruction {

 public:

 Instruction();

 Instruction(std::string);

 InstructionType type; // Type of instruction

 int dest; // Destination register number

 int src1; // Source register number

 int src2; // Source register number

 void printInstruction();

 Stage stage;

};

class Application {

 public:

 Application();

 void loadApplication(std::string);

 void printApplication();

 Instruction* getNextInstruction();

 std::vector<Instruction*> instructions;

 int PC;

};

class PipelineStage {

 public:

 PipelineStage();

 Instruction *inst;

 Stage stageType;

Page 19

 void clear();

 void addInstruction(Instruction*);

 void printStage();

 void process();

};

class Pipeline {

 public:

 Pipeline(Application*);

 int cycleTime;

 Application *application;

 PipelineStage pipeline[5];

 void cycle();

 void printPipeline();

 bool done();

 bool hasDependency();

 bool forwarding;

};

